
Establishing zero trust security
for modern cloud
architectures
How your organization can ensure safer cloud architecture
by applying a zero trust network security model

2

Introduction
Modern application architectures have evolved from static monoliths to distributed microservices,
typically running on containers and Kubernetes, and often across multiple zones such as on premises
or in a public cloud. This trend is now combined with new methodologies like DevOps, CI/CD, and
GitOps to increase the rate of software innovation. The ripple effects of these changes are being felt
across every functional area of IT and challenging traditional operational models for provisioning,
updates, monitoring, management, and security.

Security becomes especially challenging in a fast-paced, distributed, dynamic application environment
where the traditional organization boundaries are blurred. These changes in application architectures
are also transforming how applications are secured, forcing organizations (or users) to rethink
perimeter-based trust models. The goal of zero trust security models is to allow applications
developers to have freedom in creating new innovation, but ensuring that application communications
can ultimately be secured in these dynamic environments.

In this eBook we will outline concepts for evolving your security approach to address these
dynamic environments for your modern applications.

3

Table of Contents
4 Breaking security with application modernization

5 Get inside the perimeter for zero trust networks

6

7

Applying zero trust for microservices

The rise of Envoy Proxy API gateways and Istio service mesh

8 Connect, secure, and control

10 Conclusion

4

 MONOLITH DISTRIBUTED APPLICATION

CHARACTERISTICS

• Static and long-lived
• Monolithic
• Waterfall software lifecycle process
• On-premises VMs or bare metal

• Dynamic and ephemeral
• Multi-language microservices
• Continuous, independent delivery
• On-premises, hybrid and multi-cloud
• Serverless functions

SECURITY PROFILE

• One service to access
• Dedicated clients
• On campus or VPN
• Patch in place
• Fixed identities (IPs, machines)

• Multiple services to access
• Mobile, web clients
• Public internet
• Deploy new service
• Abstracted infrastructure

Breaking security with
application modernization
Modern application architectures are designed to increase the frequency of delivery. Microservices are made of potentially
hundreds of small application services loosely coupled together to leverage agile development and continuous delivery
practices. New technologies have emerged to enable their development, packaging and deployment including containers,
Kubernetes, git, continuous delivery, service mesh, and more. The operational best practices are still evolving to
understand how best to gain visibility, observability, and control over these additional layers of abstraction.

Additionally, these new applications behave differently and challenge existing operational models and tools for
monitoring and security. Instead of being fixed to a single physical machine, IP, or operating system, microservices can
share OS kernels, automatically scale up and down, and are frequently orchestrated to run on different hosts. Sometimes
they are running as serverless functions in which the underlying details of the infrastructure are unknown to the operator.
With a growing number of assets (users, devices, services) outside the corporate firewall and distributed points of access,
the traditional approach of just having a secure perimeter is not enough. The concept of what is trusted must change to
include a more diverse portfolio of modern microservices, legacy applications, and infrastructure.

5

BEFORE AFTER

• Do not trust anything outside the firewall

• Secure the perimeter

• Provide a single point of entry

• Trust anything inside corporate firewall

• (Still) do not trust anything outside the firewall

• (Still) secure the perimeter

• Provide multiple points of entry and exit

• Do not trust anything inside the corporate firewall either

The two most important changes are related to the following:

1. You can no longer blindly trust anything inside the corporate firewall
In this context, “anything” means all devices, people, and systems. Previous models
focused on protecting the network perimeter and entry onto it, so everything on the
“inside” was assumed safe. This shift assumes that internal systems and end user accounts
are susceptible to attack, takeover, or unintentional errors that can compromise other
systems.

2. Points of entry are becoming many and variable
With the adoption of SaaS, public cloud, and bring-your-own device programs, entry and
exit points are now variable and often accessed over the public internet versus VPN.

THE BASIC FUNDAMENTALS OF THE

ZERO TRUST MODEL INCLUDE:

Eliminated trust: No user or device
should be trusted without proper
authentication and authorization.

• Least-privileged access: Users should
receive the minimum amount of access
necessary.

• Microsegmentation: Security
perimeters and network components
are broken into smaller segments with
individual access requirements.

• Risk management analytics: All
network and application traffic should
be logged and inspected for suspicious
activity.

Get inside the perimeter
for zero trust networks
Introduced in 2010 by Forrester Research, the “zero trust network” model is based on the
belief that organizations should not automatically trust anything outside or inside the
organization. Instead microservices should verify everything (device, end user, system) before
granting permission to access any system.

Why is the shift to zero trust significant?

1 https://www.forrester.com/report/Five+Steps+To+A+Zero+Trust+
Network/-/E-RES120510

2 TechTarget article: https://searchsecurity.techtarget.com/definition/
zero-trust-model-zero-trust-network

https://searchnetworking.techtarget.com/definition/microsegmentation
https://searchcompliance.techtarget.com/definition/risk-management
https://www.forrester.com/report/Five+Steps+To+A+Zero+Trust+Network/-/E-RES120510
https://www.forrester.com/report/Five+Steps+To+A+Zero+Trust+Network/-/E-RES120510
https://searchsecurity.techtarget.com/definition/zero-trust-model-zero-trust-network
https://searchsecurity.techtarget.com/definition/zero-trust-model-zero-trust-network

6

Applying zero trust
for microservices
As we evaluate the development of microservices through the lens of zero trust, requirements emerge on how to practically
implement those principles into the application architecture. As a collection of loosely coupled services, the network
between the microservices becomes a critical factor in delivering a properly functioning application and becomes the
leverage point for control and security.

The diagram below outlines the traffic patterns of microservices. Consider the numbered sections as areas to implement
zero trust security principles:

1. Ingress: Traffic coming into the cluster may be referred to as
“north-south” traffic. This is when end users or devices try to
access an application service either from within or beyond the
corporate firewall.

2. Inter- and intra-cluster: Traffic between the services
may be referred to as “east-west” traffic. Depending on your
environment, you may have many applications sharing the same
cluster of compute resources.

3. Egress: Traffic leaving the cluster to an external service.

Application

External
Service

End Users

7

The rise of Envoy Proxy
API gateways and Istio
service mesh
The rise of open source, cloud native technologies like containers, Kubernetes, Istio
service mesh, and Envoy proxy have made it possible to address security for microservices
environments in new ways. The smart approach centralizes some aspects of security (like
policies and configuration) while decentralizing others (enforcement and logging) so that
the implementations and observability can scale linearly with the distributed application
services.

Consider the same diagram from the previous page with zero trust principles applied
using proxies at the edge and as sidecars to control, secure, and monitor the application
traffic into and within the cluster. At the edge, API Gateway functionality (using Envoy
proxy) is configured by Gloo Gateway to help validate the traffic and verify the requester
before establishing trust and granting access to a service. Inside the cluster, service mesh
functionality (using Envoy proxy) is configured by Gloo Mesh to only grant access
between designated services and can encrypt communications if needed.

GLOO API GATEWAY
INFRASTRUCTURE
A portfolio of tools to enable, secure, and manage
modern application service connectivity.

GLOO GATEWAY
An enhanced Envoy Proxy API
gateway and ingress controller for
Kubernetes. Gloo Edge is a
lightweight yet powerful control
plane to configure and manage
Envoy Proxy in facilitating, shaping,
and securing incoming application
traffic.

GLOO MESH
Unified management plane for
single or multi-cluster Istio service
mesh environments handling
installation, configuration, and
operations. Production support and
long term support (LTS) for
validated, upstream Istio software is
included.

https://www.solo.io/products/gloo-mesh/

8

Connect, secure, and control
In the diagram below, untrusted inbound user and application edge traffic (north-south traffic) from the Internet is filtered by Gloo
Gateway and secured before being directed to appropriate microservices. Security rules are implemented in Envoy Proxy filters, and
logging is aggregated. Similarly Gloo Mesh core functions deliver the inter- and intra-service security controls and enforcement between
microservices. Security policies are implemented centrally and federated everywhere for consistency and reduced risk. Solo’s release of
Envoy Proxy and Istio software is FIPS 140-2 compliant for added security.

1. Ingress (Gateway): There are three ways to establish trust
and validate fidelity of incoming traffic to protect your
systems.

• Web Application Filter (WAF): Inspect, filter, and
block malicious traffic and only allow safe traffic into
the environment.

• Data Loss Prevention (DLP): Protect loss and leakage
of sensitive data (PII, Credit Cards, etc.)

• Authentication and Authorization: Identify and
authenticate end users (clients) and only grant access to
the authorized services.

• Rate Limiting: controls the volume of traffic to ensure
services are not overloaded.

2. In Cluster (Service Mesh): Secure and encrypt
communications from ingress to the services in the cluster.
Only grant access between designated services and not
throughout the entire cluster.

3. Egress: Authenticate and grant secure access to external
services to complete transactions.

4. Observability: End to end observability of application
traffic patterns and anomalies to quickly resolve issues.

Service A

Service B

Service C

Istio

Gloo Mesh Gateway

Service A

Service D

Service E

Istio

Gloo Mesh Gateway

Service D

Service E

Service F

Istio

Gloo Mesh Gateway

Untrusted Traffic

Gloo Mesh Gateway

Cluster 3: OpenshiftCluster 2: EKS | AKS | GKECluster 1: Kubernetes

9

In the diagram below, there is an example of how Envoy Proxy filters can directly secure traffic, while the Gloo Gateway control
plane manages policies for authentication, authorization, web application firewall (WAF), data loss prevention (DLP), and other
custom rules.

xD
S

Se
rv

er

Conclusion
New application architectures require more than changes to code. The paradigm for operations and security must also shift to
account for the disruption caused by the architectural changes. Modern applications challenge previous security conventions
but have also spawned a new ecosystem of open source and commercial technologies that address these scenarios.

The potential of Envoy Proxy and Istio is reshaping networking from microservice architectures. They act as all-purpose
aggregation points, presenting opportunities for traffic shaping, policy control, and observability which can be leveraged to
improve overall application security. Zero trust is a comprehensive model for security encompassing devices, end users,
systems, and both internal and public networks. The core principles of zero trust can be applied to modern applications in
conjunction with Envoy as API gateway and Istio service mesh.

Solo.io, the leading application networking company, delivers a service mesh and API platform for Kubernetes, zero trust, and
microservices. The three components of the Gloo Platform – Gloo Gateway, Gloo Mesh and Gloo Network – enable enterprise
companies to rapidly adopt microservice applications, as part of their cloud journey and digital transformation. Solo.io delivers
open source solutions, and is a community leader in building the technologies of the future.

Founded in 2017 in Cambridge, MA, Solo is backed by Altimeter Capital, Redpoint Ventures, and True Ventures.

• Get started with a
trial solo.io/trial

• Request a personalized
demo solo.io/demo

Learn More
• Visit our website

at www.solo.io

https://lp.solo.io/request-trial
https://lp.solo.io/request-trial
https://lp.solo.io/request-demo
https://lp.solo.io/request-demo

	Breaking security with application modernization
	Get inside the perimeter
for zero-trust networks
	Applying zero-trust
for microservices
	The rise of Envoy Proxy API gateways and Istio service mesh
	Connect, secure, and control
	Conclusion

	Button 2:
	Page 2:
	Page 4:
	Page 7:
	Page 8:
	Page 9:

	Button 3:
	Page 2:
	Page 4:
	Page 7:
	Page 8:
	Page 9:

	Button 10:
	Button 11:
	Button 4:
	Button 5:
	Button 12:
	Button 13:

