
WHITE PAPER

Cloud-Native Solutions
and Future-Proofing with
Solo.io Gloo Gateway

Evolution in API Management:



As the landscape of software development evolves, organizations face the
challenge of managing a growing number of microservices while adopting
platform engineering best practices, workflows, and modern API management
tools. Google's Apigee has been a dominant force in the traditional API
management space, but the emergence of cloud-native solutions like Solo.io's
Gloo Gateway presents compelling alternatives. This whitepaper explores the
transition from traditional API management to cloud-native solutions,
highlighting the advantages of Solo.io's approach based on Envoy proxy
technology.

Abstract

2



The proliferation of microservices has transformed the way modern
development teams operate. Organizations are increasingly adopting platform
engineering best practices and relying on API management tools to streamline
their development workflows. Google's Apigee has been a longstanding player in
the API management domain, offering a comprehensive suite of tools for
designing, testing, and deploying APIs. However, these “all-in-one” stacks don’t
fit modern workflows and expectations around automation. The shift towards
cloud-native architectures and the need for greater flexibility and scalability have
prompted organizations to explore alternative solutions.

In this white paper, we delve into the challenges faced by organizations dealing
with the explosion of microservices and the complexities of managing API
lifecycles. We examine the evolution from traditional API management using
proxies such as Envoy, and proprietary offerings such as ApigeeX and provide
guidance as to what platform teams should be considering as they look to move
to cloud-native solutions. We will also showcase the benefits of Solo.io's Gloo
Gateway, built on a CNCF open source project, Envoy proxy, as a forward-looking
alternative for modern development environments.

3

Introduction

Managing APIs in the context of the escalating microservices landscape presents
a range of formidable challenges. The complexity mounts as numerous APIs
must navigate diverse technologies and data formats across distributed
microservices architectures, straining integration efforts. Maintaining robust API
governance, lifecycle management, scalability, and performance becomes
paramount amidst the rapid proliferation of APIs and escalating traffic demands.
Security concerns loom large, necessitating stringent measures against
unauthorized access, data breaches, and compliance risks. When evaluating
modernizing API management capabilities, platform teams must take the
following into consideration as they look to future proof their investments.

The Transition to Cloud-Native API Management



4

Service decomposition: Breaking down monolithic applications into
hundreds and thousands of independent services.
Increased granularity: Allowing developers to work on individual services
independently, facilitating faster development cycles, easier maintenance,
and scalability.
API proliferation: With each microservice exposing its own API, the number
of APIs within an organization grows exponentially as more services are
added to the ecosystem. Future proofing for increased traffic and scalability
can help organizations protect themselves from complex challenges and
skyrocketing costs.
Diverse technologies: Microservices are often developed using diverse
technologies, frameworks, and programming languages based on the
specific requirements of each service. This diversity adds another layer of
complexity as organizations must manage APIs that are built on different
technologies and may have varying standards and protocols.
Scalability and agility: While microservices offer scalability and agility
benefits, the sheer number of APIs can pose challenges in scaling
infrastructure, handling increased traffic, and maintaining agility in
development and deployment processes.

Envoy is fast becoming a popular tool for modern software architectures,
particularly for handling microservices communication and API traffic. While
they serve similar purposes, there are key differences in their design, features,
and use cases. We have taken a deeper dive into the features and challenges
related to each of these proxies as well as proprietary tools such as ApigeeX.

Evolution of API Management Tools



Envoy

Origin: Envoy was developed by Lyft in 2016 as a modern, cloud-native proxy
server designed specifically for microservices architectures and containerized
environments.

Use cases: Envoy is purpose-built for handling service-to-service communication
in microservices architectures. It is also used as an edge proxy for managing
incoming and outgoing traffic to/from microservices.

Features:

Cloud-native design: Envoy is built from the ground up with cloud-native
principles, making it highly adaptable to dynamic, distributed environments
like Kubernetes, GKE, AKS, and EKS.
Service mesh: Envoy is a core component in service mesh architectures (e.g.,
Istio, Linkerd) for managing east-west traffic between microservices,
providing features like load balancing, circuit breaking, retries, and
observability.
Dynamic configuration: Envoy supports dynamic configuration updates,
allowing it to adapt to changing network conditions, route configurations,
and service discovery without downtime.
Extensibility: Envoy offers a rich set of filters and plugins for extending its
functionality, enabling developers to customize behavior for specific use
cases (e.g., rate limiting, authentication, telemetry).
Configuration: Envoy's configuration is typically done using YAML or JSON
files, with support for dynamic configuration APIs like xDS (e.g., ADS, RDS,
CDS) for real-time updates and control plane integration.



Challenges:

Complex configuration: Envoy's configuration can be complex due the
various options available. Managing and maintaining a large number of
configuration files for routing, load balancing, retries, timeouts, etc., can
become challenging and require expertise.
Learning curve: Envoy has a steep learning curve for administrators and
developers who are new to the technology. 
Resource consumption: Envoy is known for its performance and efficiency,
however proper resource allocation and monitoring are essential to ensure
optimal performance and avoid resource contention.
Dynamic updates: While Envoy supports dynamic configuration updates
through APIs like xDS (e.g., SDS, CDS, RDS), managing and orchestrating
these updates in real-time can be complex. 
Service discovery and health checking: Envoy relies on service discovery
mechanisms (e.g., DNS, Consul, etc) to discover backend services and
perform health checks. Ensuring accurate and up-to-date service discovery
and health statuses is crucial.

Solo.io's Gloo Gateway is designed to address the challenges associated with API
management in cloud-native environments, including those related to proxy
configuration, service discovery, observability, plugin management, and
integration with API gateway features. Here's how Gloo Gateway helps address
these challenges:

Gloo's configuration API: Gloo Gateway provides a dynamic configuration
API that allows for real-time updates to routing rules, load balancing
configurations, security policies, and more. 
Learning curve: Gloo Gateway offers a simplified configuration model using a
declarative configuration format (YAML or JSON) and user-friendly APIs. This
reduces the learning curve for administrators and developers, making it
easier to understand and manage Gloo's features and configurations.
Resource consumption: Gloo Gateway is designed for efficient resource
utilization, optimizing CPU and memory usage while maintaining high
performance and scalability. It is well-suited for deployments with a large
number of proxies or high traffic volumes in cloud-native environments.



Solo.io's Gloo Gateway addresses API management challenges in cloud-native
environments by offering dynamic configuration, simplified management,
efficient resource utilization, seamless integration with service mesh, built-in
observability, an extensive plugin ecosystem, and comprehensive API gateway
features. These capabilities make Gloo Gateway a versatile and effective solution
for organizations adopting cloud-native practices and seeking robust API
management capabilities.

Dynamic updates: Gloo Gateway supports real-time configuration updates
through its configuration API and integration with service discovery
mechanisms like Kubernetes, Consul, and AWS App Mesh. Changes to
routing rules, service endpoints, and policies can be applied dynamically
without service disruption.
Service discovery integration with service mesh: Gloo Gateway integrates
seamlessly with service mesh solutions like Istio and Linkerd, leveraging their
service discovery and health checking capabilities. This ensures accurate and
up-to-date service discovery and enables advanced traffic management
features like circuit breaking, retries, and fault injection.
Built-in observability: Gloo Gateway provides built-in metrics, logging, and
tracing capabilities for monitoring API traffic, performance metrics, error
rates, and latency. It integrates with popular observability platforms like
Prometheus, Grafana, Jaeger, and Zipkin for comprehensive visibility into API
traffic and system health.
Extensive plugin support: Gloo Gateway offers an extensive plugin
ecosystem for extending and customizing API management functionalities.
Plugins cover a wide range of features including authentication, rate limiting,
transformations, security policies, caching, and more, allowing organizations
to tailor Gloo to their specific requirements.
API gateway capabilities: Gloo Gateway provides robust API gateway
capabilities including API lifecycle management, developer portals such as
the increasingly popular project Backstage, analytics, and monetization
features. It seamlessly integrates with Gloo's plugin ecosystem and external
tools for comprehensive API management in cloud-native environments.

7

https://backstage.io/


Apigee

8

ApigeeX, which is part of Google's Apigee API management platform, is not built
on Envoy. Instead, it has its own proprietary architecture and components for
handling API management functionalities.

Here's a brief overview of ApigeeX’s architecture and components:

Proxy servers: ApigeeX utilizes its own proxy servers to handle API traffic.
These proxy servers are responsible for routing requests, applying policies
(e.g., security, rate limiting, transformation), logging, and monitoring API
traffic.
Management server: The management server in Apigee Edge is responsible
for managing the overall API management platform. It handles tasks such as
API configuration management, user authentication and authorization,
analytics collection, and reporting.
Developer portal: Apigee Edge includes a Developer Portal component,
which provides a self-service portal for developers to discover APIs, access
documentation, generate API keys, and manage their applications
consuming the APIs.
Analytics and monitoring: Apigee Edge offers comprehensive analytics and
monitoring capabilities to track API usage, performance metrics, error rates,
and other key metrics. It includes dashboards, reports, and alerts for
monitoring API health and identifying trends.
API gateway: The API Gateway component in ApigeeX acts as a front-end
proxy for APIs, handling incoming requests from clients, enforcing policies,
and routing requests to backend services. It provides security features like
OAuth authentication, API key management, and threat protection.
Policy management: ApigeeX allows administrators to define and manage
policies that govern API behavior and security. These policies can include
quota enforcement, traffic management, caching, transformation, message
validation, and more.



9

While Envoy is a popular open-source proxy server commonly used in API
management and microservices architectures, ApigeeX uses its own technology
stack and infrastructure to provide API management capabilities. It's important
to note that ApigeeX is a fully managed API management platform offered as a
service by Google Cloud, and its underlying architecture is designed and
optimized for scalability, security, and performance in handling API traffic and
management tasks within GCP. Future proofing against scale and growing cost
of managing Apigee long-term should be carefully considered.

In this whitepaper we’ve explored the challenges and opportunities presented
by the proliferation of microservices in modern software development. We have
delved into the transition from traditional API management tools like Apigee to
cloud-native solutions and emphasized the advantages of Solo.io's Gloo Gateway,
built on Envoy proxy technology, as a forward-looking alternative. We’ve
discussed the complexities of managing APIs in microservices architectures, the
evolution of API management tools like Envoy, and the specific challenges and
benefits associated with each. We also highlighted the capabilities of Gloo
Gateway in addressing these challenges and providing a comprehensive API
management solution for cloud-native environments.

Future-Proof Your Organization with Gloo Gateway

As organizations navigate the complexities of managing APIs in the era of
microservices, the choice of API management tools becomes critical in ensuring
scalability, agility, security, and future-proofing. Traditional solutions like Apigee
have served their purpose but may face limitations in cloud-native environments
characterized by dynamic service discovery, scalability demands, and diverse
technologies. 

Solo.io's Gloo Gateway emerges as a compelling solution, leveraging Envoy proxy
technology to provide dynamic configuration, seamless integration with service
meshes, extensive plugin support, built-in observability, and robust API gateway
capabilities. By adopting Gloo Gateway, organizations can overcome the
challenges of API management in cloud-native environments and position
themselves for future success in managing complex API ecosystems efficiently
and effectively.


