
WHITE PAPER

for AWS EKS

Transitioning From
App Mesh to Istio

In the era of cloud-native architectures, organizations are increasingly adopting
microservices and containers to enhance agility and scalability. AWS offers
robust networking capabilities through services like AWS EKS for container
orchestration and AWS App Mesh for service-to-service communication and
observability. However, as the complexity of applications grows, there's a need
for more sophisticated networking solutions that provide fine-grained control
and advanced features.

This whitepaper explores the transition from AWS App Mesh to Istio for AWS EKS
environments, focusing on advanced networking needs in cloud-native
architectures. Key points include:

Comparison of user experience, additional features, community engagement,
and hybrid environment support between AWS App Mesh and Istio.
Practical migration examples from AWS App Mesh to Istio within an Amazon
EKS cluster, emphasizing ease of installation, mTLS enablement, and
advanced traffic management.
Introduction of Gloo Mesh Core by Solo.io for monitoring and managing Istio-
powered service mesh deployments, enhancing visibility and simplifying
upgrades.

Overall, transitioning to Istio from AWS App Mesh offers organizations greater
flexibility, scalability, and control over their containerized applications, making it
a compelling choice for modern cloud-native architectures. Istio combined with
Solo.io’s expertise and tools further simplify the migration process and empower
teams to harness the full power of Istio in their infrastructure.

Executive Summary

2

AWS has powerful networking capabilities for building virtual private clouds,
securing them, and connecting them. As organizations modernize their
application architectures to be more cloud native, built on containers and
microservices, more networking control is needed closer to the applications.
Fine-grained application networking allows organizations to build zero trust
security postures, get more accurate observability metrics to reduce mean time
to recovery (MTTR), and have better operational control over load-balancing, high
availability, and failover.

AWS EKS is a popular choice for running containers in AWS, however, Istio has
emerged as the de facto industry standard for service mesh and the solution for
fine-grained service connectivity problems. AWS App Mesh has been available
within the AWS ecosystem for some time, but more and more organizations are
looking at open source alternatives such as CNCF Istio to migrate from or
augment their App Mesh.

3

Background

AWS App Mesh was announced back in November 2018 to solve the challenge
around service-to-service communication, fine-grained networking control, and
observability. AWS networking tools such as VPCs, VPC peering, and load
balancers such as NLBs or ALBs are becoming more coarse grained and require
more robust capabilities to solve these challenges. App Mesh is best suited for
ECS, EKS, and EC2 customers who run workloads across different orchestrators
and need client-side service mesh functionality, such as traffic resiliency controls
(retries, timeouts, connection pooling) and mTLS.

Similar to other service mesh technologies, App Mesh leverages Envoy Proxy for
its sidecar data plane and offers a managed control plane that users interact
with to configure service-to-service routing rules. App Mesh is appealing because
it is part of the AWS portfolio, integrates with existing AWS primitives, and the
control plane components are managed by AWS.

As environments become more complex, users require additional capabilities
(discussed below) beyond what AWS App Mesh offers, so customers are looking
at alternatives such as Istio to help unlock the ability to adopt EKS at scale.

Understanding AWS App Mesh

https://aws.amazon.com/
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/architecture-diagrams/latest/modernize-applications-with-microservices-using-amazon-eks/modernize-applications-with-microservices-using-amazon-eks.html
https://docs.aws.amazon.com/architecture-diagrams/latest/modernize-applications-with-microservices-using-amazon-eks/modernize-applications-with-microservices-using-amazon-eks.html
https://www.solo.io/resources/webinar/best-practices-service-connectivity-at-scale-amazon-eks/
https://www.faros.ai/blog/mean-time-to-recovery-mttr-a-key-metric-in-devops#:~:text=Mean%20time%20to%20recovery%20(MTTR)%20refers%20to%20the%20average%20time,repair%2C%20restoration%2C%20and%20resolution.
https://www.faros.ai/blog/mean-time-to-recovery-mttr-a-key-metric-in-devops#:~:text=Mean%20time%20to%20recovery%20(MTTR)%20refers%20to%20the%20average%20time,repair%2C%20restoration%2C%20and%20resolution.
https://aws.amazon.com/eks/
https://istio.io/
https://aws.amazon.com/about-aws/whats-new/2019/03/aws-app-mesh-is-now-generally-available/
https://www.solo.io/resources/webinar/best-practices-service-connectivity-at-scale-amazon-eks/
https://www.solo.io/resources/webinar/best-practices-service-connectivity-at-scale-amazon-eks/
https://hub.packtpub.com/amazon-announces-the-public-preview-of-aws-app-mesh-a-service-mesh-for-microservices-on-aws/
https://docs.aws.amazon.com/app-mesh/latest/userguide/envoy.html

4

Improved User Experience

The top user experiences customers expect from a service mesh are ease of
installation and enabling mTLS. Let’s compare:

Installation:

AWS App Mesh might not meet the user expectation of simplified installation as
the installation process might require careful handling requiring a few steps to
complete a basic install. From copy/pasting credentials to using a third-party CLI
(if interested in a CLI), along with creating a combination of IAM rules mapping
them to Kubernetes, etc., a new user might find the process involved. After
installation, managing Day 2 operations, such as upgrading the mesh data plane,
could present additional considerations.

Comparable installation of Istio can be achieved with the single command:

istioctl install

Comparing App Mesh and Istio on AWS EKS

Users frequently come to service meshes with specific expectations about their
initial experience. These expectations can arise from comparisons with other
mesh solutions or from encountering straightforward hello-world demos that
create an impression of simplicity. As they progress further along the path of
service mesh adoption, they will inevitably encounter situations where their
applications require specific capabilities from the mesh such as:

Improved user experience
Additional features
Engaged community
On-premises/hybrid solution

These capabilities look different with App Mesh versus Istio. In the sections
below, we’ll explore how

https://docs.aws.amazon.com/app-mesh/latest/userguide/getting-started-kubernetes.html

Enabling mTLS:

Users have encountered several experience issues with AWS App Mesh, notably
during the setup of mTLS, a pivotal feature within a service mesh providing
authentication and encryption between services. While mTLS became available
in App Mesh in February of 2021, the configuration involves cumbersome steps
such as installing SPIRE and registering workloads and nodes.

Compare this to the seamless enablement of mTLS in Istio, which can easily be
done by simply adding your applications to the mesh.

Additional Features

As service mesh implementations mature, what were initially “nice-to-have”
features have quickly become “must-haves.” For example, a service mesh aims to
be transparent to the workload applications, but since the data plane usually
runs as a sidecar, some care must be given to lifecycle management in App
Mesh of the containers in a Kubernetes Pod. If a sidecar starts up after the
workload, for example, the workload would not have connectivity to the network
and potentially throw errors. Solving this problem is not a “big ticket” service
mesh feature early on, but must be solved for use in an organization as
environments continue to grow.

With Istio, not only can users expect transparency to their workload applications,
but they are finding additional unique features a requirement from their mesh:
For example, features such as altering headers in service-to-service requests,
integrating with app-level health checks, leveraging Envoy ext-auth for
advanced auth, using JWT tokens, calling https services, etc.

Another high demand feature for traffic control that Istio brings to AWS EKS is
zone-aware load balancing. With this feature, organizations can benefit from
better control of their ingress/egress costs across availability zones and regions.

https://github.com/aws/aws-app-mesh-roadmap/issues/392
https://github.com/aws/aws-app-mesh-roadmap/issues/397
https://github.com/aws/aws-app-mesh-roadmap/issues/140
https://github.com/aws/aws-app-mesh-roadmap/issues/81
https://github.com/aws/aws-app-mesh-roadmap/issues/417
https://istio.io/latest/docs/tasks/traffic-management/locality-load-balancing/

Engaged Community

As Istio is an open source software, users benefit from an engaged community.
These users are excited to participate and provide feedback on improving the
service mesh offering, and the community aligns with many open source
objectives that customers are leading with today.

On-Premises/Hybrid Solution

While AWS App Mesh is designed specifically for AWS environments, as
modernization and digital transformation initiatives continue to evolve,
architectures to support this are becoming more complex. These architectures
require a common way to manage multi-services across hybrid and multi-cloud
environments for inter-application traffic, security, and observability, which is
why many organizations have turned to Istio.

Adopting Istio Into Your Infrastructure

Istio has become an App Mesh alternative due to citing maturity, project stability,
and engaged community. Thousands of users and developers have helped push
the Istio community to harden the project, smooth out rough areas (like UX), and
fill gaps for running in production at scale.

Istio is a CNCF graduated project backed by many vendors (Red Hat, Solo.io,
Google, IBM, VMWare etc). It was built with a Kubernetes-first mindset, which
has significantly helped users scale their AWS EKS environments. Many of the
largest AWS EKS environments globally have adopted Istio to manage their
environments across highly regulated industries, financial services, high-tech,
retail, healthcare, and more.

Embarking on the journey of integrating Istio into your infrastructure requires a
noteworthy commitment from your team. It is essential to recognize the value of
expert guidance in this process. Assistance with application migrations and the
expansion of your application footprint across multiple Kubernetes clusters,
whether hosted on the cloud or on-premises, can significantly smooth the initial
phases of implementation.

In this section, we'll explore the process of migrating an application from AWS
App Mesh to Istio within an Amazon EKS cluster. Our journey begins with a
GitHub example from AWS App Mesh, which we'll deploy in EKS. Following this,
we'll introduce Istio into the mix, configure it to work seamlessly alongside our
existing setup, and then transition our application's namespace from App Mesh
to Istio's service mesh. This strategy is designed to ensure minimal downtime
and resource usage spikes, ultimately allowing the application to leverage Istio's
rich service mesh capabilities without altering the user experience.

At Solo.io, we take pride in our experience supporting some of the largest service
mesh users globally. Our expertise spans design consultations, architecture
reviews, implementation strategies, and day-2 operational advice, positioning us
as a reliable partner in your service mesh journey.

Solo.io Gloo Mesh Core provides an advanced platform for monitoring both single
and multi-cluster service mesh deployments. It offers user-friendly tools to
analyze service communication metrics, identify potential misconfigurations or
areas requiring attention, and recommend adjustments. Furthermore, the Istio
Lifecycle Manager facilitates user-transparent, controlled, and phased service
mesh upgrades, ensuring a seamless experience.

Migrating Your Application from AWS App Mesh
to Istio: A Practical Example

7

Preparing the EKS Cluster

Our starting point is the deployment of a demo application on EKS, guided by
the official AWS App Mesh example documentation. To streamline this process,
ensure you include the flag to avoid manual IAM
configuration – a step best described as unenjoyable. Additionally, using the
 flag aligns your environment with our demo, setting the stage
for a smooth migration.

--appmesh-access

--version=1.27

https://docs.solo.io/gloo-mesh-enterprise/main/setup/install/gloo_mesh_managed/
https://docs.solo.io/gloo-mesh-enterprise/main/setup/install/gloo_mesh_managed/
https://github.com/aws/aws-app-mesh-examples/blob/main/walkthroughs/eks/base.md

$ kubectl get pods -n howto-k8s-http2 -l app=client
NAME READY STATUS RESTARTS AGE
client-b74d67958-f549q 2/2 Running 0 64s

$ CLIENT_POD=$(kubectl get pods -n howto-k8s-http2 -l app=client -o
custom-columns=NAME:.metadata.name --no-headers)

Observing Initial Traffic Flow

8

To streamline our commands, we first capture the name of the client pod into a
variable. This approach simplifies future commands by allowing us to reference
this variable instead of manually typing or copying the pod name each time.

Next, we use kubectl port-forward to forward traffic from our local machine to
the cluster, enabling direct communication with the application running in EKS.
By appending & at the end of the command, we execute the port forwarding in
the background, allowing us to continue using the terminal without interruption.

$ kubectl port-forward -n howto-k8s-http2 $CLIENT_POD 8080 >/dev/null &
[1] 352546

With our setup ready, let's observe the traffic flow to the user console. Begin by
confirming the operation of the App Mesh-managed Envoy sidecar, indicated by
a status, signifying that both the application pod and the Envoy
proxy are up and running:
"2/2" READY

$ for i in {1..10}; do curl localhost:8080/color; echo; done
green
blue
blue
red
red
blue
blue
blue
green
green

The following command sets the weight for routing in the already deployed
"color" application, transitioning from a round-robin to a controlled, weighted
traffic distribution. This adjustment is essential for directing traffic flow more
strategically across the application's services, enhancing the capability to
conduct targeted tests and gradual deployments without disrupting the user
experience.

$ kubectl patch virtualrouters.appmesh.k8s.aws color \
 -n howto-k8s-http2 --type='json' -p='[
 {"op": "replace", "path":
"/spec/routes/0/http2Route/action/weightedTargets", "value": [
 {"virtualNodeRef": {"name": "green"}, "weight": 50},
 {"virtualNodeRef": {"name": "blue"}, "weight": 40},
 {"virtualNodeRef": {"name": "red"}, "weight": 10}
]}
]'

9

With port forwarding in place, we can now test the server response by sending
requests to the endpoint. This series of requests demonstrates how the
application returns random color values, effectively confirming that the App
Mesh is correctly handling traffic.

/color

$ for i in {1..100}; do curl -s localhost:8080/color; echo ""; done | sort
| uniq -c
 41 blue
 48 green
 11 red

$ ps -ax | grep '[k]ubectl port-forward -n howto-k8s-http2' | awk '{print
$1}' | xargs kill

Let's proceed to test the updated service setup by examining how the
distribution of calls is influenced by the newly assigned weights. Execute the
command designed to simulate traffic to our "color" application and observe the
distribution pattern. The output should be something similar to the following,
reflecting our strategic adjustments to the traffic flow among the application's
services:

ps
Finally, to clean up and stop the background port forwarding process, we locate
the process ID (PID) of using and then
terminate it using This step is crucial for freeing up the port and system
resources.

kubectl port-forward
kill.

grep,

10

11

AWS App Mesh Configuration

Let's take a closer look at the existing deployment within our Kubernetes
environment. By adhering to the App Mesh documentation, we've orchestrated
seamless service-to-service communication using AWS App Mesh. To further
enhance our control over traffic flow, we've leveraged the weightsTarget
attribute within the App Mesh VirtualRouter, allowing us to meticulously
manage how traffic is distributed among services.

Below, you'll find a detailed exploration of the components that are pivotal to our
setup, each playing a critical role in our configuration. This is illustrated in the
diagram that follow:

appmesh
controller

client
POD

color
SVC

green
POD

blue
POD

red
POD

AWS App Mesh Objects:
Mesh
4 VirtualNodes
VirtualRouter
VirtualService

howto-k8s-http2 Namespace

http://localhost:8080/
color

10% 50% 40%

appmesh-system
namespace

https://github.com/aws/aws-app-mesh-examples/tree/main/walkthroughs/howto-k8s-http2
https://github.com/aws/aws-app-mesh-examples/tree/main/walkthroughs/howto-k8s-http2

Mesh: The foundation of App Mesh within the AWS ecosystem, the Mesh is
defined in the AWS account, acting as a container for all the service mesh
components.
VirtualRouter: Functionally analogous to Istio's DestinationRule, the
VirtualRouter is crucial for managing traffic distribution among connected
services. Initially, our configuration relied on a manifest to establish a round-
robin distribution. This foundational step ensured a fair and equal distribution
of traffic across all endpoints. Moving forward to our advanced setup, we
build upon this by incorporating controlled, weighted traffic management.
VirtualService: This component acts as a bridge between the App Mesh
defined in AWS and the Kubernetes cluster. It connects the VirtualRouter,
which manages the traffic distribution logic, to the actual services running
within the cluster.
VirtualNodes: For each service endpoint in App Mesh, a corresponding
VirtualNode is required. In our setup, three VirtualNodes represent the 'color'
services (red, green, blue), and one represents the client pod that originates
the call, totaling four VirtualNodes.

This Kubernetes architecture leverages AWS App Mesh to ensure efficient and
reliable service-to-service communication. At the core of this setup is the Mesh,
which encapsulates VirtualNodes, VirtualRouter, and VirtualService – each
playing a pivotal role in traffic management. VirtualNodes correspond to each
service instance, ensuring proper routing and service discovery. The
VirtualRouter, devoid of default balancing behavior, is meticulously configured to
distribute traffic evenly across services, a task that in Istio's environment, might
not necessitate additional configuration due to its default round-robin routing.
The VirtualService ties these App Mesh configurations to the Kubernetes cluster,
streamlining the communication between cloud-defined settings and in-cluster
service operations.

Transitioning to Istio for Simplified Service Management

In this example, our goal is to replace the existing AWS App Mesh with Istio,
streamlining our service mesh infrastructure while ensuring minimal disruption.
This changeover can be accomplished within our current environment – no need
for a new cluster.

First, we need to pinpoint our cluster's name and region. These foundational
details are essential as we integrate with the Istio ecosystem. You can retrieve
these values effortlessly using the following commands:

$ CLUSTER_NAME=$(kubectl config view --minify -o json | jq -r
'.contexts[].context.cluster' | awk -F'.' '{print $1}')
$ AWS_REGION=$(kubectl config view --minify -o json | jq -r
'.contexts[].context.cluster' | awk -F'.' '{print $2}')

Verify that the variables are set accurately:

$ echo Cluster Name: $CLUSTER_NAME AWS Region: $AWS_REGION

This should output something akin to "Cluster Name: app-mesh-2 AWS Region:
us-west-2".

While we will be using the Solo.io Istio EKS Addon, available at no extra cost on
AWS (subscription through the AWS Web UI is required), it’s worth noting that
any version of Istio or installation method should yield comparable results. The
choice of Istio distribution and deployment approach in EKS is at the user's
discretion, catering to specific requirements or preferences.

13

14

To install the Solo.io Istio EKS Addon, use the following single command,
providing the cluster name and region:

$ aws eks create-addon --addon-name solo-io_istio-distro --cluster-name
$CLUSTER_NAME --region $AWS_REGION

You will receive a confirmation that Istio addon creation is underway.

After waiting for about a minute, confirm the successful deployment of Istio by
checking for an "ACTIVE" status with this command:

$ aws eks describe-addon --addon-name solo-io_istio-distro --cluster-name
$CLUSTER_NAME --region $AWS_REGION | jq .addon.status

kubectl patch service color -n howto-k8s-http2 --type='json' -p='[{"op":
"add", "path": "/spec/selector", "value": {"app":"color"}}]'

Now, with Istio in place, we patch service to comply with Istio's labeling
conventions:

color

Optimizing deployments in Kubernetes often involves a choice between
reducing resource consumption and ensuring zero downtime. This guide
outlines an in-place upgrade method that conserves resources but requires
restarting services, potentially leading to temporary downtime.

To prepare a namespace for an in-place upgrade from AWS App Mesh to Istio,
remove App Mesh-specific labels and enable Istio's sidecar injection as follows:

$ kubectl label namespace howto-k8s-http2
appmesh.k8s.aws/sidecarInjectorWebhook- mesh- --overwrite
$ kubectl label namespace howto-k8s-http2 istio-injection=enabled

These commands reconfigure the howto-k8s-http2 namespace for Istio,
necessitating a service restart.

For scenarios prioritizing zero downtime, an alternative involves using a new
namespace. Instead of modifying existing resources, apply Istio configurations to
a newly created namespace. This approach ensures uninterrupted service while
transitioning to Istio, ideal for environments where continuity is critical. Steps
would include creating a new namespace, applying configurations there, and
gradually shifting traffic to maintain service availability during the transition.

After configuring the Istio service mesh, demonstrating the traffic flow becomes
crucial. Enabling Envoy's access logging feature is a straightforward way to
achieve this. Use the snippet below to activate detailed access logging:

kubectl apply -f - <<EOF
apiVersion: telemetry.istio.io/v1alpha1
kind: Telemetry
metadata:
 name: mesh-default
 namespace: istio-system
spec:
 accessLogging:
 - providers:
 - name: envoy
EOF

If the zero downtime upgrade approach is adopted, the need to restart
deployments within the namespace to pick up the new configuration can be
avoided:

kubectl rollout restart deployment --namespace howto-k8s-http2

15

Test to confirm that Istio is now balancing traffic between endpoints just as App
Mesh did:

CLIENT_POD=$(kubectl get pods -n howto-k8s-http2 -l app=client -o custom-
columns=NAME:.metadata.name --no-headers)

Start port-forwarding to access the service locally:

kubectl port-forward -n howto-k8s-http2 $CLIENT_POD 8080 >/dev/null &

Run the test loop:

for i in {1..100}; do curl -s localhost:8080/color; echo ""; done | sort
| uniq -c

 34 blue
 36 green
 30 red

The output should summarize the number of responses from every :color

16

To gain insights into the request flow, we can examine the istio-proxy logs at
both the initiating and receiving ends of the connection. This approach allows us
to understand the interactions between different components within our service
mesh.

For the pod initiating the connection (the client pod):
Use the following command to view the last two requests made by the client
pod:

Example output:

kubectl -n howto-k8s-http2 logs $CLIENT_POD -c istio-proxy | grep -E 'GET
/|POST /' | tail -n5

17

[2024-02-23T23:01:33.602Z] "GET / HTTP/2" 200 - via_upstream - "-" 0 3 1 1
"-" "Go-http-client/2.0" "469059e8-0db4-4b2f-81da-b52062e3c91e"
"color.howto-k8s-http2.svc.cluster.local:8080" "192.168.55.44:8080"
outbound|8080||color.howto-k8s-http2.svc.cluster.local 192.168.59.9:49412
10.100.17.82:8080 192.168.59.9:34404 - default
....
[2024-02-23T23:01:33.670Z] "GET / HTTP/2" 200 - via_upstream - "-" 0 4 1 1
"-" "Go-http-client/2.0" "ebcbdf38-96e1-47ea-8896-ac7e657958ef"
"color.howto-k8s-http2.svc.cluster.local:8080" "192.168.34.145:8080"
outbound|8080||color.howto-k8s-http2.svc.cluster.local 192.168.59.9:34062
10.100.17.82:8080 192.168.59.9:34404 - default

For the receiving end (any of the pods that return 'color'):

To observe the requests received, execute:

kubectl -n howto-k8s-http2 logs -l app=color -c istio-proxy | grep -E
'GET /|POST /' | tail -n5

Example output:

With Istio successfully in place, we can remove the no longer needed App Mesh
configurations:

[2024-02-23T23:01:33.360Z] "GET / HTTP/2" 200 - via_upstream - "-" 0 3 0 0
"-" "Go-http-client/2.0" "18b928c4-21a2-4125-bd7b-05473d0bb350"
"color.howto-k8s-http2.svc.cluster.local:8080" "192.168.55.44:8080"
inbound|8080|| 127.0.0.6:37687 192.168.55.44:8080 192.168.59.9:49412
outbound_.8080_._.color.howto-k8s-http2.svc.cluster.local default
...
[2024-02-23T23:01:33.602Z] "GET / HTTP/2" 200 - via_upstream - "-" 0 3 0 0
"-" "Go-http-client/2.0" "469059e8-0db4-4b2f-81da-b52062e3c91e"
"color.howto-k8s-http2.svc.cluster.local:8080" "192.168.55.44:8080"
inbound|8080|| 127.0.0.6:37687 192.168.55.44:8080 192.168.59.9:49412
outbound_.8080_._.color.howto-k8s-http2.svc.cluster.local default

kubectl delete virtualnodes, virtualservices -n howto-k8s-http2 --all

18

19

Through these steps, we've transitioned from AWS App Mesh to Istio, a move
that brings simplicity and continuity of service operations. The result is a service
mesh that integrates more fluidly with our Kubernetes environment, offering a
balance of manageability and flexibility.

The diagram visualizes the transformed architecture:

Envoy Sidecars: While both App Mesh and Istio leverage Envoy proxies, Istio
provides a layer of management that extends Envoy's capabilities within the
Kubernetes environment. Each pod in the namespace now
includes an Envoy sidecar proxy managed by Istio, which facilitates advanced
traffic management, security, and observability features.

howto-k8s-http2

appmesh
controller

client
POD

color
SVC

green
POD

blue
POD

red
POD

AWS App Mesh Objects:
Mesh
4 VirtualNodes
VirtualRouter
VirtualService

howto-k8s-http2 Namespace

http://localhost:8080/
color

10% 50% 40%

appmesh-system
namespace

Control Plane: The namespace contains Istio's control plane
components, including . This component configures the sidecar proxies,
manages policies, and aggregates telemetry data, thereby serving as the
administrative hub for the service mesh.

Service Routing: The service within the namespace continues to serve as
the entry point for incoming requests. Istio's control plane intelligently directs
traffic to the appropriate 'color' pod, based on the configured routing rules.

User Interface: On the user's end, the interface remains consistent. The
application is still accessed through the same URL (
c), with no perceptible change in interaction or experience, despite the shift
in the underlying service mesh technology.

This evolution to Istio has refined our service mesh without interrupting service
delivery, illustrating the seamless nature of the transition. The diagram above
reflects the new state where Istio's nuanced management of Envoy sidecars
enriches our Kubernetes service mesh, aligning with modern requirements for
flexibility and scalability.

istio-system
istiod

color

http://localhost:8080/
color

Leveraging Istio for Advanced Traffic Management Enhancements

With our migration to Istio, we've accessed an extensive suite of advanced
service mesh features, bypassing the necessity for complex, Istio-specific
configurations from the outset. By merely applying the Istio injection label to our
Kubernetes services, we've integrated the expansive benefits of Istio's service
mesh, which include secure service-to-service communication, comprehensive
telemetry, as well as robust authentication and authorization mechanisms.

While our primary strategy involves an in-place update within the existing
Kubernetes environment. It's crucial to acknowledge that running parallel
namespaces is a good option and some have also opted to just run parallel
clusters. In such cases, running two parallel namespaces — one with the current
App Mesh setup and the other configured for Istio — becomes an invaluable
strategy. This parallel setup allows for a phased traffic shift from App Mesh to

20

Istio, ensuring that services remain fully operational and accessible to users
throughout the transition. By leveraging this method, organizations can
prioritize continuous service delivery, seamlessly migrating traffic to Istio's
advanced service mesh capabilities, including robust authentication,
authorization, and precise traffic management, without compromising on
availability. This dual-namespace approach offers a strategic pathway for those
who place a higher emphasis on maintaining zero downtime during the
migration process.

Expanding further, our aim is to leverage Istio's VirtualServices and
DestinationRules to achieve precise traffic management. These key Istio
components enable us to implement controlled traffic management strategies
that align with the advanced setup previously realized with App Mesh. Through
this focused application of Istio's capabilities, we mirror the detailed, weighted
traffic distribution configured in our App Mesh environment, achieving a
cohesive and seamless integration of sophisticated traffic management
practices within our service mesh architecture.

The Power of Istio's Custom Resources:

VirtualServices allow us to define how traffic is routed to different versions of
a service within the mesh. With this, we can implement advanced patterns
like canary deployments, where we introduce a new service version and
gradually shift traffic to it.
DestinationRules are used in tandem with VirtualServices. They provide the
rules that dictate traffic policies and network paths, enabling scenarios such
as load balancing and circuit breaking for enhanced service resilience.

In our example, by applying a DestinationRule, we designate service subsets
based on specific labels. Then, using a VirtualService, we can distribute traffic
across these subsets with precise weightings. This approach is integral for:

Dynamic Traffic Control: Adjust traffic flows on the fly, facilitating real-time
responses to operational requirements or user demand without redeploying
pods.
Enhanced Observability: Leverage Istio's telemetry to gain insights into the
mesh's health and traffic patterns, aiding in proactive decision-making and
issue resolution.
Improved Resilience: Implement robust routing strategies to ensure the
mesh can handle failures or traffic spikes without degrading user experience.

Let's apply a DestinationRule for our 'color' service:

kubectl apply -f - <<EOF
apiVersion: networking.istio.io/v1beta1
kind: DestinationRule
metadata:
 name: color-destination-rule
 namespace: howto-k8s-http2
spec:
 host: color
 subsets:
 - name: blue
 labels:
 version: blue
 - name: green
 labels:
 version: green
 - name: red
 labels:
 version: red
EOF

22

Next, we establish a VirtualService to manage the traffic distribution:

kubectl apply -f - <<EOF
apiVersion: networking.istio.io/v1beta1
kind: VirtualService
metadata:
 name: color-virtual-service
 namespace: howto-k8s-http2
spec:
 hosts:
 - color
 http:
 - route:
 - destination:
 host: color
 subset: green
 weight: 50
 - destination:
 host: color
 subset: blue
 weight: 40
 - destination:
 host: color
 subset: red
 weight: 10
EOF

Upon executing our test command, the efficacy of Istio's traffic management
policies is confirmed through the output, which aligns with the weights specified
in our VirtualService configuration:

for i in {1..100}; do curl -s localhost:8080/color; echo ""; done | sort
| uniq -c
 38 blue
 54 green
 8 red

The distribution of requests clearly adheres to the rules defined in our Istio
VirtualService. The service routed approximately half of the traffic to green, a
significant proportion to blue, and a smaller fraction to red, just as we intended.

This real-world result exemplifies Istio's adeptness at managing traffic with
precision. By integrating VirtualServices and DestinationRules, we've established
a service mesh that not only ensures the continued delivery of services but also
enhances the overall functionality of our network. This advanced routing
capability facilitates a robust, observable, and highly manageable service
architecture, setting a solid foundation for resilient operations and offering the
flexibility to adapt to changing requirements.

With these configurations, Istio's ability to govern traffic flow is more than
theoretical – it's a practical reality. Our setup exemplifies the service mesh's
potential, enabling us to confidently manage traffic distribution, monitor service
health, and improve our system's resilience. It's a testament to Istio's promise of a
sophisticated, scalable, and controllable network infrastructure within
Kubernetes.

To learn more, try Gloo Mesh Core or visit the open-source distribution of Istio
from Solo.io on the Amazon Marketplace today!

24

client
POD

color
SVC

green
POD

blue
POD

red
POD

VirtualService

 - destination:
 host: color
 subset: green
 weight: 50
 - destination:
 host: color
 subset: blue
 weight: 40
 - destination:
 host: color
 subset: red
 weight: 10

kind: DestinationRule

 subsets:
 - name: blue
 labels:
 version: blue
 - name: green
 labels:
 version: green
 - name: red
 labels:
 version: red

howto-k8s-http2 Namespace

10% 50% 40%

http://localhost:8080/color

https://www.solo.io/products/gloo-mesh/
https://aws.amazon.com/marketplace/pp/prodview-kvr2wqekzmuhi?sr=0-2&ref_=beagle&applicationId=AWSMPContessa

