
SERVICE MESH AT SCALE
Challenges and approaches to
multi-cluster deployment patterns

2

Table of Contents
4	 What is Service Mesh?

5	 Going Beyond a Single Cluster

6	 Considerations for Multi-Cluster Service Mesh Patterns

7	 Gloo Mesh for Service Mesh Management

8	 How it works: Gloo Mesh Editions and Extensions

9	 Gloo Mesh Gateway

10	 Gloo Mesh Core

11	 Gloo Mesh Extensions

12	 Gloo Portal

3

Introduction
Application modernization initiatives typically include
adoption of cloud, Kubernetes-orchestrated containers,
and distributed microservices. These initiatives are driven
by the need for greater agility in software innovation to
delight customers and streamline business operations.
Compared to monolithic applications, microservices
allow organizations to make changes to a portion of
the application quickly and without impacting the entire
application. This architecture also allows developers
greater freedom in building individual services in
different languages, so they can use the right technology
for the job without worry of compatibility issues.

With this transformation of the application
architecture comes new challenges including how to:

•	 Manage service-to-service communication

•	 Share and secure APIs

•	 Get observability into the application network

Then these need to be solved for multi-cluster and
multi-platform deployment patterns across clouds
and on-premises for scale and application reliability.
In this eBook we will review the benefits of a service
mesh and explore best practices for deploying and
operating service meshes at scale.

4

What is Service Mesh?
A service mesh is an infrastructure layer that abstracts application
networking from the business logic of the application to provide
a configurable network layer to facilitate communication
between services using their APIs. This architecture is facilitated
by deploying a proxy as a sidecar alongside each application
service. All communications between the application services
are facilitated through the sidecar proxies (data plane) that are
configured and managed through a control plane.

The shift to microservices architecture creates a new challenge
in solving the service-to-service communication to form an
application. What was once a monolithic code base is now
potentially hundreds of loosely coupled services that are
dynamic, ephemeral, and distributed, making the network
between them a critical part of the application infrastructure.

A service mesh solves major challenges with API through L7
networking to gain more insight and control of distributed
application behavior. Service meshes provide essential
capabilities to application developers, including service
discovery, client-side load balancing, timeouts, retries, and
circuit breaking. These capabilities work regardless of their
application framework or language. For operators, service
mesh provides a set of L7 controls over traffic routing, policy
enforcement, identity (authentication/ authorization), and security
(encryption, mTLS, WAF, DLP.) A service mesh is also an extension
point to enable new application functionality delivered through the
network with custom filters.

Envoy Proxy

K8s Services

Envoy Proxy

K8s Services

Envoy Proxy

K8s Services

Control Plane

Data Plane

Istio Service
Mesh Management

5

Going Beyond a Single Cluster

REASONS FOR MULTI-CLUSTER

•	 Strong network isolation

•	 Regulatory compliance

•	 High availability

•	 Scalability

•	 Data Locality and Cost

•	 Configuration

•	 Service discovery

•	 Identity federation

•	 Security

•	 Shared / Separate / Federated

Building application environments for resiliency, scale, security, and compliance can require multiple
instances of the application deployed together, in different clusters, or across different regions.
Businesses with customers in many different countries are learning of new data sovereignty regulations
that dictate where and how their applications are served from and customer data stored.

Most organizations have many application environments geographically dispersed to serve applications
globally. The architectural choices between having a few large clusters and many small clusters have
implications on infrastructure configuration, operations, development workflows, and collaboration.

A best practice for containerized microservices running in Kubernetes is to deploy many, smaller
clusters to form more explicit boundaries than multi-tenancy can provide. While beneficial, multi-cluster
Kubernetes and service mesh environments introduce new questions and challenges for organizations
to consider when designing their architecture.

6

Considerations for Multi-Cluster
Service Mesh Patterns
Multi-cluster service mesh environments raise new questions on how these distributed clusters of service
will discover, route, and operate as a unified application delivering a seamless customer experience.

Will the clusters be completely uniform
from the services to network policies,
completely different or somewhere in
between? Who owns which aspects of
the cluster, service mesh, and services?

Federation provides flexibility in having
some aspects of the configuration
consistent and shared across all
clusters while leaving other aspects
of the configuration available for
each team to customize as needed.
Federation and delegation provide
flexibility to separate out administrative
domains by team or network.

Will the clusters be completely uniform
from the services to network policies,
completely different or somewhere in
between? Who owns which aspects of
the cluster, service mesh, and services?

Service mesh clusters can be registered
to an independent control plane for
service discovery and master index of
the services, clusters, networks, and
make that information available without
having to replicate the services across
all clusters.

How will services in one network
know which services from another
network are allowed to communicate
with each other?

An independent control plane
can unify the root identity between
multiple service mesh clusters with a
shared trust model for the registered
clusters and the services that reside
across them.

Learn More Learn More Learn More

CONFIGURATION
AND ADMINISTRATION

SERVICE DISCOVERY IDENTITY FEDERATION

https://www.solo.io/blog/configuration-as-data-gitops-and-controllers-its-not-simple-for-multi-cluster/
https://www.solo.io/blog/multi-cluster-service-discovery-in-kubernetes-and-service-mesh/
https://www.solo.io/blog/identity-federation-for-multi-cluster-kubernetes-and-service-mesh/

7

Gloo Mesh for Service
Mesh Management
Gloo Mesh is a service mesh management plane for configuring, routing, and
operating single to multi-cluster and multi-platform environments with production
and long-term support for upstream Istio software.

Gloo Mesh creates a “virtual mesh” of target service mesh clusters to establish
shared-trust, cross-cluster service discovery, and identity federation to enable
traffic and access control policies across the multi-cluster environment. Global
policies for failover or locality-aware routing can also be configured to provide
high availability and compliant services. The unique role-based API allows for
the delegation of service mesh access and configuration ownership by different
personas and teams enabling management efficiency at scale.

GLOO MESH TUTORIALS

•	 Compare Gloo Mesh and open source editions

•	 Upgrading Istio without downtime

•	 The operational overhead of Istio’s external control plane

•	 How to configure an Istio service mesh with IPv6

https://soloiodev.wpengine.com/wp-content/uploads/2021/08/Solo_Gloo_Mesh1.1_Feature_Comparison_080921_v2-1.pdf
https://www.solo.io/blog/upgrading-istio-without-downtime/
https://www.solo.io/blog/the-operational-overhead-of-istios-external-control-plane/
https://www.solo.io/blog/how-to-configure-an-istio-service-mesh-with-ipv6/

HOW IT WORKS
Gloo Mesh Editions and Extensions

9

Gloo Mesh Gateway

Service A

Service B

Service C

Istio

Gloo Mesh Gateway

Service A

Service D

Service E

Istio

Gloo Mesh Gateway

Service D

Service E

Service F

Istio

Management Platform

Management
Console

Command
Line Interface

Developer
Portal

Management Platform

Management
Console

GitOps
Workflows

Developer
Portal

Untrusted Tra�c

Gloo Mesh Gateway
1

Cluster 3: OpenshiftCluster 2: EKS | AKS | GKECluster 1: Kubernetes

111

1 Gloo Mesh Gateway
Istio-based north-south API gateway to govern and
manage requests for services

•	 Certificate management and rotation

•	 Integrate with Identity & Access Management
systems to leverage existing security policies

•	 Enforce authentication, authorization, and
encryption including mTLS

•	 Manage request routing, rate-limiting, load
balancing, circuit breaking and failover traffic
based on locality and affinity rules

•	 Protect against attacks with a built-in web
application firewall (WAF)

•	 Guard against sensitive info breaches with data
loss prevention (DLP)

•	 Collect metrics for observability, troubleshooting,
and auditing with Prometheus and Grafana

•	 Transformations filter / SOAP

10

Manage cluster ingress (and egress) for Kubernetes
clusters, VMs, and legacy applications:

•	 FIPS-ready Istio-based service mesh

•	 Automated Service and API Discovery

•	 Enforce zero-trust security with authentication,
authorization, and encryption

•	 Apply custom policies to route, filter, and transform
L4 and L7 traffic

•	 Manage retries, timeouts, and circuit breakers

•	 Load balance and failover traffic based on
locality and affinity rules

•	 Guard against sensitive info breaches with data
loss prevention

•	 Collect metrics for observability, troubleshooting,
and auditing with Prometheus and Grafana

2 Gloo Mesh Core

Service A

Service B

Service C

Istio 2

Gloo Mesh Gateway

Service A

Service D

Service E

Istio 2

Gloo Mesh Gateway

Service D

Service E

Service F

Istio 2

Gloo Mesh Gateway

Management Platform

Management
Console

GitOps
Workflows

Developer
Portal

Untrusted Tra�c

Gloo Mesh Gateway

Cluster 3: OpenshiftCluster 2: EKS | AKS | GKECluster 1: Kubernetes

11

Service A

Service B

Service C

Istio

Gloo Mesh Gateway

Service A

Service D

Service E

Istio

Gloo Mesh Gateway

Service D

Service E

Service F

Istio

Gloo Mesh Gateway

Cluster 3: OpenshiftCluster 2: EKS | AKS | GKECluster 1: Kubernetes

Management Platform

Management
Console

GitOps
Workflows

Developer
Portal

3

Untrusted Tra�c

Gloo Mesh Gateway
3

3 3

Extend and customize your API infrastructure with
tooling for WebAssembly, plugins, and operators

•	 Delegate authentication using OpenID Connect

•	 Pre-built support for external authentication (OIDC/
OAuth), API Key, LDAP, and OPA Auth

•	 Extend Envoy Proxy capabilities with pre-built
extensions including:

•	 Create custom Envoy Proxy filters with Web
Assembly (Wasm)

3 Gloo Mesh Extensions

	» Web Application Firewall (WAF)

	» Data Lost Prevention (DLP)

	» AWS Lambda

	» Request and Response Transition

	» SOAP

12

Service A

Service B

Service C

Istio

Gloo Mesh Gateway

Service A

Service D

Service E

Istio

Gloo Mesh Gateway

Service D

Service E

Service F

Istio

Gloo Mesh Gateway

Gloo Mesh Gateway

Cluster 3: OpenshiftCluster 2: EKS | AKS | GKECluster 1: Kubernetes

Management Platform

Developer
Portal

4
Management
Console

GitOps
Workflows

Untrusted Tra�cCatalog, publish, and securely share APIs via a
self-service developer portal

•	 CRD driven and works flawlessly with existing
GitOps and CI/CD processes

•	 Accelerate developer onboarding with self-service
documentation, and self-service sign up

•	 Manage gRPC APIs and REST APIs in the same
developer portal

•	 Upload existing OpenAPI and proto documents to
build the catalog

•	 Communicatie authentication/authorization, usage
plans and policies

•	 Showback, chargeback, and usage tracking of APIs

•	 Supports REST and gRPC APIs

•	 No database required

4 Gloo Portal

Learn More
•	 Visit our website at

www.solo.io
•	 Request a personalized demo

solo.io/demo
•	 Email us at

contact@solo.io

Solo.io, the modern service connectivity company, delivers application ng interface (API) infrastructure software that
makes it easy for your architects and engineers to manage application traffic. As you move to cloud, microservices,
Kubernetes containers, and serverless functions, you need a secure and reliable approach to application networking,
with unified observability and control. Solo builds on open source Envoy Proxy and Istio to give you comprehensive API
gateways and service meshes that work everywhere, at any scale. Founded in 2017 in Cambridge, MA, Solo is backed by
Redpoint Ventures and True Ventures.

https://www.solo.io
https://lp.solo.io/request-demo
mailto:contact%40solo.io.com?subject=Hello

	What is Service Mesh?
	Going Beyond a Single Cluster
	Considerations for Multi-Cluster Service Mesh Patterns
	Gloo Mesh for Service Mesh Management
	￼ Gloo Mesh Gateway
	￼ Gloo Mesh Core
	￼ Gloo Mesh Extensions
	￼ Gloo Portal

	Button 10:
	Button 11:
	Button 2:
	Page 3:
	Page 4:

	Button 3:
	Page 3:
	Page 4:

	Button 30:
	Button 31:
	Button 24:
	Button 25:
	Button 20:
	Button 21:
	Button 28:
	Button 29:
	Button 32:
	Button 33:
	Button 34:
	Button 35:
	Button 36:
	Button 37:

