
Sidecar-less
 Istio Explained
 Lowering the Barrier to
 Service Mesh Adoption
 with Ambient Mode

 Lin Sun and Christian Posta

REPORT

Compliments of

https://ambientmesh.io/?&utm_source=web&utm_medium=direct&utm_campaign=FY25_WW_CON_&utm_content=Solo-ambient-mesh-io

Lin Sun and Christian Posta

Sidecar-less Istio Explained
Lowering the Barrier to Service Mesh

Adoption with Ambient Mode

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-17802-4

[LSI]

Sidecar-less Istio Explained
by Lin Sun and Christian Posta

Copyright © 2024 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (https://oreilly.com). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: John Devins
Development Editor: Gary O’Brien
Production Editor: Gregory Hyman
Copyeditor: nSight, Inc.

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

September 2024: First Edition

Revision History for the First Edition
2024-09-20: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Sidecar-less
Istio Explained, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

The views expressed in this work are those of the authors and do not represent the
publisher’s views. While the publisher and the authors have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and Solo.io. See our statement
of editorial independence.

https://oreilly.com
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Foreword. v

1. Introducing Istio Ambient Mode. 1
Current Challenges 1
Benefits of Istio Ambient Mode 2
Additional Benefits 3
What About the Sidecar? 4

2. Istio Ambient Architecture. 5
Istio Ambient Mode 5
Ambient Is Designed for Scale and Security 13
Wrapping Up 15

3. Exploring Istio Ambient Mode. 17
The Ambient Profile 17
The Benefits of Running Your Applications in Ambient 19
Incrementally Adopting Ambient 21
Understanding How Istio Ambient Architecture Works 30
Wrapping Up 33

4. Key Takeaways and Next Steps. 35
Takeaways 35
Next Steps 36

iii

Foreword

Istio has come a long way since the early days of the project. It’s
now a graduated CNCF project and ranks as the third-most active
project in that ecosystem among some pretty impressive peers. Istio
is solving big problems for users in just about every kind of industry
imaginable. Istio was founded on a highly principled approach to
distributed zero-trust security, and much of its adoption growth is
tied to the demand for stronger security in enterprises. Zero trust is
no longer an unreachable pipe dream but a roadmap expectation for
most CSOs.

Like any technology, Istio must adapt to its users, and the introduc‐
tion of “ambient mesh” is the largest evolutionary step the project
has taken since the 1.0 release. We’ve learned a lot as a community
over the last seven years about the good, bad, and ugly of service
mesh. We often like to talk about how we’re trying to make Istio
delightful and boring at the same time. We chose the name “ambi‐
ent” to evoke the idea that a service mesh should be part of the
underlying infrastructure, something that is delightfully powerful
when you need it to do something but that is otherwise just part of
the networking wallpaper.

This book is an exploration of the critical ideas behind ambient
mesh, how they are made reality, and how to use ambient mesh
to solve real-world problems. Lin Sun and Christian Posta have
been with the project since the very beginning, and their wealth
of insight and experience with production use makes them ideally
qualified to write this guide. If you are responsible for platform

v

infrastructure, have been tasked with getting your organization to a
zero-trust posture, or are wondering how ambient mesh can make
your application more reliable, this book is for you.

— Louis Ryan
CTO at Solo.io and cocreator of Istio

vi | Foreword

CHAPTER 1

Introducing Istio Ambient Mode

Istio ambient mode is a sidecar-less data plane for Istio service
mesh originally developed by Solo.io and Google. The goal for
Istio ambient is to improve the operational experience of adopting,
deploying, upgrading, and generally managing Istio throughout its
life as critical infrastructure. Additional benefits over Istio’s sidecar
deployments include resource cost savings, performance improve‐
ments, and improved security while maintaining Istio’s core feature
set of zero-trust security, resilience, observability, traffic routing,
and policy enforcement.

Current Challenges
Before we get too deep into what Istio ambient mode is and how it
works, we should understand the motivation for its creation. Using
sidecars to implement mesh functionality has been battle-tested and
used successfully at scale to provide a lot of value. So why introduce
an alternative approach?

We (the creators of Istio) have always intended to make the service
mesh transparent and incrementally adoptable, but in practice, the
sidecar approach has had drawbacks.

For example, injecting a sidecar proxy is an invasive operation. To
enable this, the application needs to be restarted once auto-injection
has been enabled. The application will need to know it’s there to
properly size things like memory and CPU. Scaling out across large
numbers of workloads increases the memory and CPU overhead of

1

http://solo.io

running the sidecar. This can get very expensive at scale. From a
security standpoint, if the application is compromised, the attacker
will have access to the sidecar and secret key material. If a malicious
user wants to opt out of the capabilities provided by the mesh, they
can work around the sidecar.

Injecting a proxy and tying the application lifecycle to the infra‐
structure lifecycle causes transparency to be lost. Deployment
descriptors that go through continuous integration/continuous
deployment (CI/CD) may not be exactly what is deployed in pro‐
duction when auto-injecting a sidecar proxy. This is because auto-
injection mutates the pod spec that happens after deployment.
Additionally, when upgrading Istio’s data plane, applications need
to be redeployed or restarted. This churn in the cluster needs to be
coordinated to avoid unplanned outages.

Another drawback is the adoption of Istio features is an “all-or-
nothing” proposition. For example, users who wish to adopt mutual
transport layer security (mTLS) for compliance reasons must inject
a sidecar proxy to get mTLS, but that proxy also implements com‐
plex Layer 7 (L7) handling (retries, traffic splitting, complex load
balancing, observability collection, etc.). This co-location of features
introduces the risk of unexpected behaviors. Istio is a powerful
service mesh with many capabilities, but the current adoption curve
can be very steep without the ability to adopt features incrementally
and absorb risk.

These challenges make it harder to adopt a service mesh at scale,
cause turbulence in a rollout of mesh functionality, and introduce
L7 behavior risk that may be unnecessary for the features being
adopted. Istio ambient mode aims to solve this transparency and
incremental adoption problem while introducing cost, performance,
and security improvements.

Benefits of Istio Ambient Mode
Istio ambient mode addresses the challenges of transparency and
incremental adoption by introducing a sidecar-less data plane and
splitting the behaviors of the mesh into two separate layers, each
handling concerns that can be combined to provide the full features
of the service mesh.

2 | Chapter 1: Introducing Istio Ambient Mode

By removing the sidecar from the application pod, workloads are no
longer susceptible to container race conditions caused by injecting
a sidecar proxy. Job workloads, which can otherwise stay around
because of the sidecar, now run to completion correctly. Additional
benefits seen with this model include making it harder for work‐
loads to go around the data plane (ignoring the sidecar, forgetting to
inject the sidecar, maliciously removing the sidecar, etc.).

Application onboarding and adoption are easier when you don’t
need to add a sidecar proxy to the workload. For example, applica‐
tions that may already be running can be dynamically added to the
service mesh by applying labels either per workload or at the name‐
space level. Workloads can be similarly removed from the mesh
dynamically, which makes experimentally or incrementally adding
workloads to the mesh possible without disturbing the pods.

Upgrades become easier and safer when no data plane component
is intermingled with the application. The data plane components
can be upgraded independently without restarting the workloads or
many fleets of workloads.

Istio ambient mode splits the data plane into two layers: the secure
overlay layer and the L7 waypoint proxy layer. We’ll discuss each
layer in more detail in Chapter 2. This layering approach allows
incremental adoption of mesh features. For example, users who
want to adopt zero-trust networking properties may opt to use
mTLS. By starting with Istio ambient mode’s secure overlay layer,
which handles only Layer 4 (L4) behaviors of the network like estab‐
lishing mTLS and telemetry collection, users can adopt the features
they want without introducing unnecessary risk.

Additional Benefits
We originally designed Istio ambient for ease of adoption, opera‐
tions, and maintenance; however, the design of the data plane pro‐
vides users with a number of additional benefits:

• Better resource usage for data plane components because there•
are fewer proxies

• Reduced cost of running a service mesh (by at least 90%) as a•
result of lower resources

Additional Benefits | 3

• Right-size scaling of L7 proxies based on traffic and not over‐•
provisioning

• Better performance for workloads needing only mTLS because•
all L7 processing is bypassed

• Separation of application code from the data plane for security•
improvements

• Better support for server-send-first protocols and nonconform‐•
ant HTTP implementations

What About the Sidecar?
The sidecar implementation of Istio service mesh has worked well
enough, but as discussed previously, it can be improved. Istio ambi‐
ent mode is steadily marching toward GA sometime in the second
half of 2024 (beta was released in May 2024). Remember, the beta
label in Istio has typically signaled the project will support produc‐
tion usage, while GA indicates significant production usage and
hardening. At some point after GA, ambient mode will become
the default. Sidecar implementation will still be available, but the
project will recommend that users migrate. If you’re looking at Istio
service mesh, starting with Istio ambient mode is the recommended
approach per the project maintainers.

4 | Chapter 1: Introducing Istio Ambient Mode

CHAPTER 2

Istio Ambient Architecture

Istio ambient mode implements a “sidecar-less” architecture that
is transparent to the workloads in the mesh. This approach has
a number of benefits, like ease of adoption, improved operations,
infrastructure cost savings, and more, as discussed in Chapter 1. In
this chapter, we’ll dig into the architecture of ambient mode and
understand how the various components work together to provide
mesh functionality like resilience, observability, security, and policy
enforcement.

Istio Ambient Mode
The main difference between the Istio sidecar and ambient mode
is the data plane. As the ambient name suggests, the data plane
attempts to be completely transparent and fade away “into the net‐
work”:

• Istio ambient does not use sidecars.•
• Istio ambient separates out L4 capabilities from L7.•
• L4 can be used independently or combined with L7.•

Applications are not explicitly aware of the ambient data plane and
are not injected with a sidecar or init container. No part of the data
plane exists within the application pods. Additionally, pods do not
need to be restarted or deal with obscure container race conditions
that can cause network failures.

5

In the Istio ambient architecture, the data plane is explicitly separa‐
ted into two layers: a secure overlay layer that handles L4, and a
waypoint proxy layer that handles L7, as shown in Figure 2-1. As
mentioned in Chapter 1, you will want to adopt the features of a
service mesh incrementally and absorb risk commensurate with the
features you use. Since a very common starting point for adopting
service mesh is driven by the need for zero-trust networking and
compliance, mTLS is a very popular initial feature. By splitting out
the mesh into two layers, users can adopt mTLS without the risks
of L7 handling (or mishandling) and later adopt L7 capabilities as
needed.

Figure 2-1. Logical view of Istio ambient mode consisting of different
layers to handle specific areas of functionality

This split allows users to adopt features incrementally, but it also
creates an opportunity to optimize the data path for service-to-
service communications. L7 processing can be expensive, and the
sidecar approach forces L7 processing on both sides of the connec‐
tion even if not using L7 functionality. With the ambient data plane
mode, we can improve performance by skipping any L7 capabilities
and keep traffic only in the secure overlay layer.

6 | Chapter 2: Istio Ambient Architecture

Secure Overlay Layer
The secure overlay layer of ambient mode is responsible for estab‐
lishing secure connections using strong identity between mesh
workloads. It does this by leveraging a CNI plug-in and a compo‐
nent called the ztunnel. The ztunnel specifically handles collecting
L4 telemetry, opening connections, and establishing mTLS with
workload identity cryptography.

The ztunnel gets deployed as a DaemonSet on Kubernetes and is a
lightweight, purposely built proxy with Rust. As a node proxy, the
ztunnel becomes shared among all of the workloads that run on the
respective node. In many ways, the ztunnel component becomes an
extension of the CNI.

If a connection from a workload destined for another workload
does not have any L7 capabilities, the ztunnel will be smart enough
to keep the traffic only in the secure overlay layer, as shown in Fig‐
ure 2-2. If the workload is deployed on another node in the cluster,
the ztunnel will tunnel the connection to the remote ztunnel on the
destination node where the workload is deployed. From there, the
ztunnel on the target node will forward the connection to the target
workload.

Figure 2-2. The ztunnel will handle all traffic at L4

Istio Ambient Mode | 7

If source and destination pods are located on the same
node, the traffic between them is encrypted using
mTLS and any L4 policies are enforced by the ztun‐
nel on the node. The ztunnel serves as source and
destination ztunnel in this case, providing the secure
overlay layer similarly as source and destination pods
are placed on different nodes.

Waypoint Proxy Layer
L7 service mesh capabilities are implemented with waypoint proxies
in the architecture of Istio ambient mode, as shown in Figure 2-1.
This data plane fully parses the connection into requests and can
apply policies based on properties like headers and credentials
found in the request. L7 functionality includes things like:

• HTTP 1.x, 2, or 3•
• Request routing•
• Advanced load balancing•
• Request mirroring•
• Fault injection•
• Request retries•
• gRPC-specific capabilities•

Waypoint proxies are implemented using the Envoy proxy and
deployed per namespace by default. They can be scaled independ‐
ently depending on the request load to services within the name‐
space. You can think of these waypoint proxies as individual
gateways for their namespaces, as shown in Figure 2-3.

Compared to the sidecar deployment architecture, the ambient
architecture allows you to independently scale the waypoint proxy
layer to better fit the incoming traffic for services within the specific
namespace. For example, you may have 10 instances of App A,
and there is a load of 100 requests per second to App A (so approxi‐
mately 10 requests per second per instance). In the sidecar scenario,
there would be 10 sidecar proxies deployed with each instance of
App A. You may also have 20 instances of App B serving a load of
200 requests per second in the same namespace. With Istio ambient,
you could deploy two waypoint proxies for App A’s and App B’s
residing namespaces to handle the 100 requests over the 10 App A

8 | Chapter 2: Istio Ambient Architecture

instances and the 200 requests over the 20 App B instances. This
gives a better fit of service mesh data plane to actual workload usage
versus the brute force approach of deploying a proxy per instance.

Figure 2-3. The waypoint proxy is deployed per namespace and can be
thought of as a “gateway per namespace”

Waypoint proxies get deployed by namespace owners, platform
owners, or through automation. When a waypoint proxy is
deployed, and the destination is configured to use the waypoint
proxy, the secure overlay layer will route the connection to the
destination’s L7 waypoint proxy, as shown in Figure 2-4.

The characteristics of tenancy for L7 are similar in the Istio ambient
mode to a sidecar deployment. L7 capabilities are not shared for
multiple tenancies in a single L7 proxy. By default, you can deploy a
waypoint based on namespace, where Apps A and B share the same
waypoint proxy. In some scenarios, a namespace-based waypoint
may not be granular enough. For example, if you only want a way‐
point proxy for App A and not App B, you can deploy a waypoint
proxy for App A instead of a namespace waypoint proxy. Or if you
simply want App A to have its dedicated waypoint proxy so it is
not impacted by noisy neighbors in the same namespace, you can
deploy a dedicated waypoint proxy for App A in addition to the
namespace waypoint proxy.

Istio Ambient Mode | 9

Figure 2-4. Traffic will flow through L7 waypoint proxies to enforce
any potential L7 policies

Istio CNI Plug-in
Istio currently has a CNI plug-in (called istio-cni node agent) that
handles traffic redirection for sidecars. Istio ambient mode extends
this CNI plug-in for scenarios where there is no sidecar and the
secure overlay layer running on the node needs to handle the traffic
(both incoming and outgoing). In ambient mode, the Istio CNI
plug-in detects any workload on the node as it is added to ambient
mode (as designated by labels—see Chapter 3), enters the workload
pod’s network namespace, and establishes the network redirection
rules inside the pod’s network namespace (also called in-pod) so
that all traffic to and from the workload pod is redirected to the
ztunnel’s listening sockets created in the pod’s network namespace,
while the ztunnel itself is running outside of the pod and its network
namespace.

10 | Chapter 2: Istio Ambient Architecture

As services are added or removed from Istio ambient mode, the
istio-cni plug-in will dynamically update the redirection rules. If
labels are removed, or Istio is uninstalled, the redirection rules
will be flushed and reset to what they were before the installation/
enablement of Istio ambient.

The key innovation of the CNI plug-in is to configure the in-pod
network redirection, while informing ztunnel about the application
pods’ network namespaces so the ztunnel can create the listening
sockets in the network namespace of each of the co-located pods.
This in-pod approach was not obvious to Istio maintainers because
the ztunnel itself runs in its own network namespace, and thus we
started traffic redirection between the application pod and ztunnel
within the node network namespace first in the initial implementa‐
tion. With this approach, the traffic redirection between ztunnel and
application pods happens in the pods’ network namespace, which
is very similar to sidecars and application pods today and is strictly
invisible to any Kubernetes primary CNI operating in the node net‐
work namespace. Network policy can continue to be enforced and
managed by any Kubernetes primary CNI, regardless of whether the
CNI uses eBPF or iptables, without any conflict.

HTTP-Based Overlay Network Environment
Istio 1.15 introduced HTTP-Based Overlay Network Environment
(HBONE), a new tunneling mechanism for interservice mesh com‐
munication. This is not something an application owner sees or uses
directly. HBONE operates transparently behind the scenes between
proxies.

This transport protocol runs on a dedicated port (15008) between
the proxies in the data plane and uses mTLS and strong identity,
which is similar to how Istio currently works. However, HBONE is
hidden to workloads—it’s not used by applications. The reasons to
support a better transport mechanism include:

• Better support for protocols, including server-send-first•
• Better support for incrementally adopting Istio, especially when•

apps use their own TLS certificates
• Support for calling pod IPs directly and eliminating ways•

around Istio mTLS/encapsulation that we see today

Istio Ambient Mode | 11

https://oreil.ly/GN-CI

HBONE is based on HTTP/2 CONNECT and tunnels requests
between workloads as streams, reusing the HTTP/2 connection
where possible. Istio ambient uses this transport between the data
plane components (ztunnel, waypoint proxies, etc.) by default, as
shown in Figure 2-5.

Figure 2-5. HBONE is used as the internal encapsulation mechanism
between ztunnel and waypoint proxy data plane proxies

12 | Chapter 2: Istio Ambient Architecture

At this point, you should have a good understanding of the compo‐
nents that make up the Istio ambient mode architecture. In the next
section, we’ll review some of the important consequences of the Istio
ambient architecture.

Ambient Is Designed for Scale and Security
We have designed ambient mode to handle very large Kubernetes
clusters with tens or hundreds of thousands of pods and to be as
secure as (or more secure than) sidecars. Istio ambient mode is built
upon five-plus years of experience and expertise in building service-
mesh infrastructure, and the design decisions have been taken to
try and balance the best of both worlds (sidecar versus sidecar-less).
Let’s cover some areas where it’s important to understand the impli‐
cations of Istio ambient mode.

Why Did We Rewrite ztunnel from Scratch?
When Istio ambient service mesh was initially announced in 2022,
the ztunnel was implemented using an Envoy proxy. Given that we
use Envoy for the rest of Istio—sidecars, gateways, and waypoint
proxies—it was natural for us to start implementing ztunnel using
Envoy.

However, we found that while Envoy was a great fit for its rich
L7 feature set and extensibility, it was challenging to debug our
Envoy-based ztunnel, which requires deep knowledge of extremely
complex Envoy configurations. We purposefully built ztunnel to be
simpler and performant using Rust, which processes very minimal
human-readable configurations from the Istio control plane, com‐
pared with the large, complex, nearly not human-readable Envoy
proxy configuration. You’ll not only be able to understand the Dis‐
covery Service (xDS) configuration from Istiod to ztunnel much
more easily, but you’ll also notice much-reduced network traffic
and cost between the Istiod control plane and ztunnels due to the
minimal configurations.

Ambient Is Designed for Scale and Security | 13

Is the Ambient Architecture Susceptible to
Noisy Neighbor Problems?
The ambient architecture redesigns the service mesh data plane, and
the separation of L4 and L7 proxies can raise the question about
noisy neighbor problems. The noisy neighbor effect can be seen
when one workload affects the behavior or performance of the data
plane for other workloads using the same data plane.

The waypoint proxies for the ambient architecture specifically avoid
this problem. Each tenant can have its own proxy, so configuration,
extensions, or behavior between different target workloads from
different tenants are not shared.

The ztunnel, however, is a shared component, so can it be affected?
The ztunnel is strictly an L4 component and only deals with L4
connections and bytes, much like Linux or Kubernetes already does.
It cannot be configured for complex app-specific behavior, nor can
it be extended with things like WebAssembly, Lua, or calls out to
external services—all of which can cause a noisy neighbor effect.
Since the scope of the responsibility for the ztunnel is tightly bound
on the data path, whatever effect a noisy neighbor may exhibit will
be present to all components in the data path (the Linux kernel,
network devices, etc.).

Does Ambient Mode Cause an Increase in Latency?
Since Istio ambient splits the data plane into two layers, there are
more options for tuning performance. In use cases where waypoint
proxies or policy does not need to be in the data path, we see quite
a significant performance improvement. A big part of the reason
for this is bypassing any unnecessary L7 (e.g., HTTP 1.1, HTTP/2,
gRPC, etc.) parsing of the byte stream, which can consume a lot of
cycles.

In the scenarios where an L7 policy needs to be enforced in the
waypoint proxy, Istio makes a call out to a remote proxy, and this
could potentially increase overall latency for a specific call. From
what we’ve seen in our performance testing for the beta release of
Istio ambient, the hop to the waypoint proxy has similar latency for
application response time as the sidecar model, which processes L7
on both ends of the connection. We’re exploring different options

14 | Chapter 2: Istio Ambient Architecture

to improve over sidecars, and that’s the goal we’ll continue to tune
toward.

What About Security?
We believe the security boundaries in ambient mode are improved
compared to the sidecar model. In the sidecar model, the data plane
is run next to the application and shares the same pod boundary
as the app. If the application is compromised, the attacker will
have access to all secret material in the pod, including tokens and
certificates used by the data plane. In ambient mode, no part of the
data plane or identity material is exposed to the applications and the
application is unaware of Istio’s presence.

The ztunnel is a shared component, however, albeit with a greatly
reduced attack surface since it only handles L4 functionality. This
component should be treated with the same regard for security as
any of the other shared components on the node, such as the kubelet
or a CNI agent. Compromise of this component would have a lower
blast radius from the other comparable shared components, as only
the currently running identities on that specific node would be at
risk.

With a large focus on operational improvements for Istio ambient,
platform owners have the ability to upgrade the Istio data plane
more quickly and safely without forcing application restarts. This
gives operators the chance to more predictably and consistently
patch common vulnerabilities and exposures (CVEs) that are dis‐
covered to keep the system in a secure state.

Wrapping Up
We covered a lot in this chapter, from the main architectural com‐
ponents in Istio ambient to how it works, to some implications of
this architecture. We encourage you to check out the documentation
or educational workshops (see Chapter 4) to learn more about Istio
ambient. In the next chapter, we will walk through Istio ambient
mode use cases, adoption strategy, and the benefits it can bring to
your organization.

Wrapping Up | 15

https://oreil.ly/ddSlI

CHAPTER 3

Exploring Istio Ambient Mode

Now that you have an overview of the Istio ambient architecture,
let’s walk through some Istio ambient mode use cases, adoption
strategy, the benefits it can bring to your organization, and how
ambient mode works. We’ll begin by looking at the new ambient
profile, which installs the Istiod control plane and data plane com‐
ponents, such as the istio-cni and ztunnel.

The Ambient Profile
There are two different ways to install Istio, istioctl and helm. To
start, istioctl is the most straightforward approach to installing Istio
ambient mode. For production, we recommend using helm to install
Istio since helm can help you manage components separately with
more flexibility.

Istio has a few built-in configuration profiles, such as demo, default,
minimal, etc., that you can use when installing Istio. These profiles
provide customization of the Istio control plane and data plane.
Istio ambient introduces the new ambient profile. The ambient
profile is not yet the default profile, and we recommend that it
be used in production with precautions. Because it supports both
the sidecar-less and sidecar architectures, ambient will become the
default profile for Istio after it is production-ready and used by
many users. For now, though, to install ambient, you must specify
the ambient profile.

17

Without any customization, the ambient profile installs the Istio
custom resource definitions, Istiod, ztunnel, and CNI plug-in. The
Istio CNI plug-in is required for the ambient profile because it is
responsible for detecting which application pods are part of ambient
and configuring the traffic redirection between the ztunnel to the
co-located pods. This is a significant change because Istio CNI was
previously an optional component.

HBONE is enabled by default to configure sidecars, ztunnel, and
Istio gateways (if enabled) to use HBONE so they can communicate
with each other. This configuration is only valid for newer Istio
(v1.15 or later). Refer to Chapter 2 for more details on HBONE.

Both istio-cni and ztunnel are deployed as Kubernetes DaemonSets.
Running on every node is intentional because each Istio CNI plug-in
pod checks all pods co-located on the same node to see if they
are part of ambient mode. For any pods in ambient mode on the
node where the Istio CNI pod runs, the Istio CNI plug-in pod
configures in-pod traffic redirects automatically for you so that all
incoming and outgoing traffic to any pod in ambient is redirected to
its co-located ztunnel’s sockets in the pod’s network namespace first.
As new pods are deployed or removed on the node, the co-located
Istio CNI plug-in pod continues to monitor any pod creation or
removal, and it updates the redirect functions to reflect these pod
changes accordingly.

Essentially, the Istio CNI plug-in takes care that the incoming and
outgoing traffic to pods is redirected to ztunnel’s sockets, similar to
how it configures the traffic redirection to sidecars, all within the
pod network namespace. For any incoming or outgoing traffic cap‐
tured for the ztunnel, the ztunnel is configured to route intelligently,
based on the original destination.

For pods without sidecars and not in ambient, Istio
CNI won’t attempt to set up any traffic redirection. For
pods with sidecars, Istio CNI sets up traffic redirection
between the application container and its sidecar.

After you install ambient mode, you may begin to add applications.
Before we discuss how to do that, let’s focus on the benefits, so you
can justify paying for the control plane and data plane resources and
keep them running.

18 | Chapter 3: Exploring Istio Ambient Mode

https://oreil.ly/Hj-6H

The Benefits of Running Your
Applications in Ambient
In this section, we’ll discuss the key benefits of running your appli‐
cations in ambient, compared to no mesh or sidecar architecture.
We hope these benefits will help you decide whether you should
invest in running your applications in ambient mode.

Simplified Operation
By simply labeling a namespace, you can enroll your applications
in ambient without requiring any restart or change of your applica‐
tion deployment. Your application can remain running without any
change, and enrolling it to ambient adds little or no latency to it.
When there is a new Istio or Envoy release, you no longer need
to restart your application to pick up the release. You can update
ztunnel or waypoints independently without any change to your
application.

Better Incremental Adoption
In a nutshell, a service mesh provides security, observability, and
traffic management. But not everyone needs every feature, and most
users adopt service mesh incrementally with sidecars prior to ambi‐
ent mode. We designed ambient mode knowing that nearly all users
would want encrypted traffic with mTLS among their applications,
where only trusted identities can call a given application. However,
some users may only want to trust certain trusted identities with
specific rules and conditions, such as a particular method or header.
Some users may want observability at L4 or L7 or both, and some
users may want traffic control or resiliency. Or users may want
all these functions. In any case, they should have the flexibility to
choose what they need. These benefits are the same, regardless of
sidecars and sidecar-less architecture.

Ambient mode allows better incremental adoption because the
secure overlay layer is separated via ztunnel, and the L7 processing
layer via waypoint proxy. This means waypoint proxies are only
required when you need any L7 telemetry or rich L7 authorization
policy or traffic management functions. In other words, you don’t
need to operate waypoint proxies or allocate any resources for them
when you don’t need any L7 processing. Essentially, we expect many

The Benefits of Running Your Applications in Ambient | 19

users will simply run ambient mode using only the secure overlay
layer, which isn’t possible with sidecar architecture.

The two-layer architecture also enables a more granular transition
from no mesh or sidecar to the secure overlay layer (on a pod level,
namespace level, or mesh level), to the L7 processing layer (on a
service account level or namespace level).

Simpler Application Onboarding
Besides the service mesh features common to sidecar and ambient,
what is unique about ambient is transparency and that it is non‐
intrusive to the application. If you have had issues with running
your applications with a sidecar, or have had startup or shutdown
sequence issues between your application container and sidecars,
ambient mode could be a much better solution for you, as you
no longer need to worry about managing the sidecar startup or
shutdown sequence compared with your application container.

The benefit is beyond not needing to inject the sidecar or restart the
application pod. In Chapter 2, you learned about HBONE and how
it provides better support for applications that speak server-send-
first protocols (e.g., MySQL) or call pod IP directly (e.g., Kubernetes
StatefulSets). Ambient mode’s broader support for applications will
reduce your time and surprises when onboarding your application
onto the mesh.

Reduced Infrastructure Cost
When running your applications in service mesh, you pay for the
control plane and data plane CPU and memory allocation, regard‐
less of the actual usage. You may also pay for the network cost asso‐
ciated with transferring configurations from the Istio control plane
to the data plane. Compared to sidecars, ambient mode reduces
infrastructure costs by having the required ztunnel handle the
secure overlay layer for all co-located pods and having the optional
waypoint proxy deployed outside of the application pod.

Let’s walk through a simple scenario with Apps A, B, C, and D,
running on a four-node Kubernetes cluster (see Table 3-1). If each
application has one replica, you won’t see much savings. However,
no one runs critical applications with one replica in production
environments. If you increase to 10 or 20 replicas, you’ll start to
notice the difference between the number of required data plane

20 | Chapter 3: Exploring Istio Ambient Mode

https://oreil.ly/1kWdp
https://oreil.ly/1kWdp

containers you need to pay for as part of the infrastructure cost.
You don’t have a choice to have fewer sidecars as the replica number
grows, but with ambient you can control which application requires
a waypoint proxy and scale the waypoint proxy independently from
the application. Further, a large number of sidecars also means more
network costs to transfer configurations from the Istio control plane
to each of the sidecars versus a few ztunnels and optional waypoint
proxies.

Table 3-1. A comparison of a service mesh with sidecars, ambient with
ztunnel, and ambient with optional waypoint proxies

Sidecars Ambient with
ztunnel

Ambient with optional waypoint
proxies

1 replica for each app 4 4 2
10 replicas for each app 40 4 4
20 replicas for each app 80 4 4+ (depending on features used and

load of the proxy)

Now that you understand the two layers introduced by ambient
mode and the benefits brought by each layer, you’ll learn how to add
your applications to ambient mode next.

Incrementally Adopting Ambient
Adding applications to ambient mode allows you to leverage
the mesh to secure, connect, and observe services incrementally,
without any sidecars. You can either enroll applications in ambi‐
ent after your services are deployed or as your services are
being deployed. Ambient mode is transparent to your applications,
without any changes in either scenario.

We recommend you adopt Istio ambient incrementally to leverage
the two-layer data plane architecture fully. Incremental adoption
provides the following benefits:

• To minimize impacts to your application, you can adopt ambi‐•
ent mode per application, per namespace, or mesh-wide as
needed.

• Enjoy the secure overlay layer benefits as you adopt service•
mesh, without paying for the L7 processing layer.

Incrementally Adopting Ambient | 21

• Learn only the required Istio resources for what you need•
(could be none), which helps you minimize learning, as Istio
provides very rich APIs.

A common adoption strategy is to secure inbound traffic with the
Istio ingress gateway first, as it is the least intrusive, then gradually
add one or more of your services to the ambient service mesh to
leverage L4 mesh capabilities provided by the secure overlay layer. If
you still require L7 mesh capabilities provided by the L7 processing
layer, you can add waypoint proxies as needed.

Securing Inbound Traffic
Most users adopt service mesh by securing inbound traffic from
a source outside the mesh. Prior to ambient, this was the most
popular first step, not only because it is a common requirement
but also because it doesn’t require services running in the mesh.
Istio ingress gateway can be programmed via Kubernetes Gateway
and HTTPRoute/TCPRoute (or Istio Gateway and VirtualService)
resources to terminate TLS or mTLS traffic and route to services
running outside the mesh. For example, you can deploy the Kuber‐
netes Gateway and HTTPRoute resources for the web-api service to
allow the service to be securely accessed from outside the cluster
via the Istio ingress gateway. While it was perfectly fine to secure
inbound traffic without sidecars for the web-api service prior to the
ambient launch, the connection between the Istio ingress gateway
and the web-api service is not mTLS without sidecars for the web-
api service.

Securing inbound traffic is the same with sidecar or ambient,
using either Kubernetes Gateway and HTTPRoute/TCPRoute (or Istio
Gateway and VirtualService) resources. This ensures a smooth
transition from sidecar to ambient without changing any of your
Istio resources. What is unique with ambient is that you can secure
the connection between the Istio ingress gateway and the web-api
service without a sidecar by simply enrolling the web-api service in
ambient.

22 | Chapter 3: Exploring Istio Ambient Mode

Including Workloads in Ambient
Workloads can be included in the service mesh (i.e., without a
sidecar) with two options:

• By specific namespace (DEFAULT)•
• Individual pods•

We recommend you start with the DEFAULT mode, adding workloads
to ambient on a namespace basis. You simply add the istio.io/
dataplane-mode=ambient label to your namespace, and all pods
in your namespace will be part of ambient (e.g., kubectl label
namespace default istio.io/dataplane-mode=ambient). As the
example in Figure 3-1 shows, it’s that simple. The best part is that
there is no need to restart or redeploy anything. Because ambient
mode is transparent to the workloads, your workloads should con‐
tinue running without any interruption as they are included in
ambient mode. This is why we called it ambient.

Figure 3-1. Workloads can be added to the mesh by labeling the
namespace with istio.io/dataplane-mode=ambient

If you recall, the sidecar architecture requires each sidecar to be
deployed to each application pod and connected to Istiod to get the
latest xDS configuration, which could place a limit on how many
connections a single Istiod instance could support. With the elimi‐
nation of sidecars, the ambient architecture is designed to drastically
reduce the connections to Istiod, which allows the Istio control
plane to manage more application pods and send less configuration

Incrementally Adopting Ambient | 23

https://oreil.ly/TVygj
https://oreil.ly/TVygj

to the data plane. This means you pay less for the control plane and
network costs between the control plane and the data plane.

With sidecars, before you can add any workloads to the mesh, you
need to be aware of the application requirements to ensure the
services meet the minimum requirements. With ambient, you no
longer need to worry about many of these requirements, such as
avoiding application UID 1337 or many ports used by your sidecar,
because there is simply no sidecar running next to your application
container.

In addition to adding workloads to ambient after they are deployed,
you can enroll workloads in ambient as they are deployed by label‐
ing the namespace to be part of ambient first. Want to exclude
a certain pod from ambient in the namespace? You simply label
the istio.io/dataplane-mode as none on the pod descriptor. Or
you can label individual pods with istio.io/dataplane-mode as
ambient to enroll pods to ambient without the namespace label. The
pod label allows you to configure individual pods into or opt them
out of ambient on a per pod basis, in case you want to add pods to
ambient one pod at a time to minimize impact to your application
or exclude certain pods from ambient due to incompatibility.

What if you also have the injection label in your name‐
space or pod (e.g., istio-injection or istio.io/
rev)? The injection label has preference over the
istio.io/dataplane-mode label. We designed it this
way to be backward compatible as you transit from
sidecar to sidecar-less with ambient mode.

What Have You Gained?
By including your workloads in ambient, you have gained many
benefits provided by the secure overlay layer via ztunnel:

Security
mTLS-encrypted communication among your applications with
cryptographic-based identity; simple L4 authorization policy

Observability
TCP metrics and logs

Traffic control
TCP routing

24 | Chapter 3: Exploring Istio Ambient Mode

https://oreil.ly/Kzo_S

We’ll cover mTLS, L4 authorization policy, and telemetry in detail
next.

mTLS
Similar to sidecars, each service account will be assigned to its own
identity, and key/certificate pairs are signed for each service account
via certificate signing requests (CSRs) from ztunnel. Adding your
workloads to ambient enables your workloads to communicate with
encrypted traffic using cryptographic identity automatically, without
any code change or sidecar injection.

Ztunnel can request key/certificate pairs to be signed via CSR only
for each service account used by pods running on the co-located
node. For example, there are sleep and nonsleep service accounts
on the ambient-worker node. The ztunnel pod running on the
co-located node of the sleep pod can only impersonate the sleep
service account, not the web-api service account. You can view the
X.509 certificates managed by your ztunnel by using the istioctl
ztunnel-config certificate command, then base 64 decode
each of the certificates. After decoding, you can also step through
the X.509 certificate to view the Issuer, Validity, Subject
Alternative Name (for example, spiffe://cluster.local/ns/

default/sa/sleep), etc., for each service’s X.509 certificate. Similar
to the sidecar architecture, these X.509 certificates will be automati‐
cally rotated well before the expiration (every 12 hours by default in
Istio) without you needing to do anything:

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 26103058169083755937642419747271048863...
 Signature Algorithm: SHA256-RSA
 Issuer: O=cluster.local
 Validity
 Not Before: Aug 14 21:18:49 2024 UTC
 Not After : Aug 15 21:20:49 2024 UTC
 Subject:
 Subject Public Key Info:
 Public Key Algorithm: ECDSA
 Public-Key: (256 bit)...
 Curve: P-256
 ...
 X509v3 Subject Alternative Name: critical
 URI:spiffe://cluster.local/ns/default/sa/sleep
 ...

Incrementally Adopting Ambient | 25

Enforce L4 authorization policies
While it is great to have mTLS among all your services, to fulfill
a zero-trust architecture at the network layer, you’ll want to deny
all access except for access that is explicitly granted. This is par‐
ticularly important for the distributed nature of microservices in
the cloud, commonly deployed in Kubernetes, where pods can be
dynamically scaled up or down or even restarted. For example,
you start by deploying an allow-nothing Istio authorization policy
for everything in your namespace. This is effective right away to
disallow any service in your namespace to be accessed. Then you
can gradually allow your source workloads’ service accounts to
access web-api by creating and deploying an authorization policy
that selects the app: web-api by label with the ALLOW action from
the source principals (for example, cluster.local/ns/default/sa/
sleep and cluster.local/ns/istio-system/sa/istio-gateway-
service-account).

Only a simple authorization policy is supported with
the secure overlay layer via ztunnel, such as denying all
or allowing a specific service account to access a given
service. We’ll cover some rich authorization policies
that contain headers, paths or methods, etc., soon.

The simple L4-based Istio authorization policy is the exact same
policy you use today for sidecars. We purposefully designed most
of the Istio APIs to remain the same to ensure a smooth transition
from sidecar to ambient.

L4 telemetry
You’ll also get L4 metrics or logs automatically without any extra
steps. For example, from the destination ztunnel’s /stats/prometheus
endpoint, you’ll see several L4 metrics that start with “istio_tcp”
such as istio_tcp_connections_opened_total. These metrics con‐
tain useful information about the TCP connections, such as the
source and destination workloads with their identities and how
many TCP connections are closed between the source and destina‐
tion workloads. You can use these metrics to check for unexpected
unauthorized connections (and which source identities they come
from).

26 | Chapter 3: Exploring Istio Ambient Mode

In addition to L4 telemetry, a provider may provide
L7 telemetry in the ztunnel so that users don’t need
to deploy a waypoint proxy for the sole purpose of
L7 telemetry. For example, Solo.io’s ztunnel provides
high-performant L7 telemetry, including HTTP met‐
rics, logs, and traces.
If you recall that, in Chapter 2, we discussed how we
purposefully separated waypoint proxy from ztunnel
to avoid noisy neighbor problems with L7 processing,
you may be wondering, why L7 telemetry in ztunnel?
L7 telemetry in ztunnel does not modify HTTP traffic
in any way, so thus we can continue to achieve the
performance and security requirements of ztunnel.

L7 Processing
You may find what is provided in the secure overlay layer doesn’t
meet your requirements. For example, you want a rich L7 authori‐
zation policy that configures access based on a particular method
and path. Or you want to launch a newer version of your service
without impacting existing traffic or to perform a canary test on
the newer version. Or you want to get HTTP access logs, metrics,
and distributed tracing among some of your services. In this section,
we’ll discuss how you can opt in to enforce L7 processing with
ambient mode to perform these common scenarios.

To summarize, the L7 processing layer via waypoint proxy provides
the following three key benefits:

Security
Rich L7 authorization policy

Traffic management
Dark launch, canary test, resiliency, chaos testing, and control‐
ling outbound traffic

Observability
HTTP metrics, access logs, and tracing

L7 authorization policies
L4 authorization policy is useful but may not be sufficient for your
needs if you want to only allow access for a given path and a given
method, or only when the request is from certain sources’ JSON
Web Token (JWT) claims or certain headers. The recommended

Incrementally Adopting Ambient | 27

https://oreil.ly/9AJ-B

zero-trust architecture is to explicitly allow only exactly what you
need and no more. For example, you want to allow the sleep or
istio-gateway service to access the web-api service only on the GET
method and not on the DELETE or POST method.

The target ztunnel denies L4 authorization policies. With L7 author‐
ization policies, the web-api service’s waypoint proxy, which serves
as the L7 authorization policy enforcement point, denies the policy.
Like sidecars, the waypoint proxy gets its xDS configuration from
Istiod. This ensures its role-based access control (RBAC) filter is
configured properly based on the access policies from the authoriza‐
tion policies you deployed.

Earlier, we explained how to view the X.509 certificates managed
by your ztunnel. Similarly, using the istioctl pc secret com‐
mand, you can confirm that the universal resource identifier for
the web-api’s waypoint proxy Subject Alternate Name is also
spiffe://cluster.local/ns/default/sa/waypoint. The waypoint
has its own identity, different from web-api’s identity. This is pur‐
posefully designed so that the waypoint can be used by multiple
services in the namespace (or even outside of the namespace). Simi‐
lar to web-api’s certificates, Istio automatically rotates the waypoint’s
certificates without you performing any manual actions.

L7 traffic management
Getting service timeouts and circuit-breaker configurations prop‐
erly set in a distributed microservice application is difficult. Simi‐
larly, it is difficult to perform canary testing without redeploying
anything. Istio makes it easier to get these settings correct by ena‐
bling you to increase resiliency or shift traffic without modifying
your deployment. You can continue to use Kubernetes Gateway
resources (Gateway, HTTPRoute/TCPRoute, etc.) or Istio’s classic net‐
work resources with ambient mode.

Prior to ambient, to achieve L7 resiliency or traffic management
features, you would have sidecars on both source and destination,
with the proxy configuration to handle these functions mostly in
the source’s sidecar proxy. For example, the sleep sidecar retries the
connection to the web-api service three times or injects a fault with
five seconds’ delay. With ambient, you only need a destination way‐
point proxy to handle these functions, without requiring a waypoint
proxy for the source. Reducing the need for a source waypoint

28 | Chapter 3: Exploring Istio Ambient Mode

proxy simplifies the operation and eliminates the cost of running the
source waypoint proxy.

When do you need to deploy the source waypoint
proxy? You don’t. This design has reduced the config‐
uration for the destination waypoint proxy, as it only
needs to be aware of the relevant destinations. If you
are familiar with sidecars, you may recall you have to
use the Istio Sidecar resource and exportTo configu‐
ration to trim the configuration of your sidecar to the
minimum. With ambient mode, Sidecar resource and
exportTo configuration are no longer applicable, as the
waypoint proxy focuses on configurations related to its
destinations only.
You can deploy an egress waypoint proxy for control‐
ling egress traffic. You can apply Istio’s ServiceEntry
resources to control access to specific external destina‐
tions, and use Istio’s AuthorizationPolicy resources
to control what workloads can access the egress way‐
point to call these external destinations.

L7 telemetry

With the waypoint proxy deployed for the web-api service, you
automatically get L7 metrics for the web-api service, the same as
with sidecars. For example, you can view the 403 response code
from the web-api service’s waypoint proxy pod’s /stats/prometheus
endpoint.

You’ll also be able to view access logs in the waypoint proxy’s log.
For example, you can see RBAC: access denied errors in the access
log if you attempt to send the DELETE request to the web-api service.

What is unique about L7 telemetry is that you don’t have the sidecar
or waypoint proxy on the source side. The destination waypoint
proxy is intelligent enough to collect telemetry data for both the
source and destination without needing to deploy a proxy on the
source side. This reduces the need to operate the source waypoint
proxy and the requirement for an extra hop to traverse through the
source waypoint proxy when the sleep service calls the web-api
service.

Incrementally Adopting Ambient | 29

Waypoint proxy for your service
Depending on which service requires L7 processing, you’ll need to
ensure that the waypoint proxy is deployed and running for the
namespace and that the namespace is using the waypoint to ensure
the L7 processing is effective. Otherwise, you could have L7 policies
applied but not enforced by anything.

You can use the Kubernetes Gateway resource to deploy your way‐
point proxy for your namespace and label the namespace to use
the waypoint proxy, or you can simply use the istioctl waypoint
command. Within the Gateway resource, configuring gatewayClass
Name to istio-waypoint indicates you want to use the default way‐
point proxy provided by Istio instead of Istio ingress gateway or any
custom waypoint proxy.

Waypoint proxies are for services in the namespace
by default. Additionally, you can configure waypoint
proxies to process all traffic (including services and
workloads), just the workload, or no traffic.
Waypoint proxies are designed to be pluggable through
the gatewayClassName configuration, following the
design principle of the Kubernetes Gateway API. A
waypoint provider can provide its own waypoint proxy
for Istio ambient mode, which could be more perform‐
ant or have richer features. For example, Solo.io pro‐
vides a Gloo waypoint proxy that is built on top of
Gloo gateway.

Understanding How Istio Ambient
Architecture Works
So far, we’ve covered the ambient profile, the ambient mode config‐
uration, incrementally adopting ambient starting with securing the
inbound traffic, and then including workloads in ambient mode
and leveraging the L7 processing layer as needed based on your
requirements. It is important to understand how it all works. In
this section, we’ll discuss workloads in the service mesh following
the ambient approach. Sidecar-based deployments are interoperable
with the ambient approach, but this section will focus on workloads
in ambient mode.

30 | Chapter 3: Exploring Istio Ambient Mode

Source Workload Initiates a Call to Another Service
Once a workload is in the service mesh, it may make calls to other
services and take advantage of the features of the mesh. As men‐
tioned earlier in this chapter, istio-cni is a plug-in to the cluster CNI
that watches for new workloads in the mesh and applies in-pod redi‐
rection rules so that traffic to workloads in the mesh will be directed
to the ztunnel sockets in the pod network namespace (Figure 3-2).

Figure 3-2. Transparent redirection of workload traffic to the in-pod
ztunnel sockets

This redirection is completely transparent to the workload—i.e.,
the workload opens connections as it would normally, but Linux
networking is used to direct the connections to the ztunnel sockets.
Note that kube-proxy functionality (like service IP translation to
pod IP) is skipped; the ztunnel plays the role of the kube-proxy in
this case.

ztunnel Handles the Traffic and Initiates mTLS
When the workload traffic gets redirected to the ztunnel sockets,
the ztunnel inspects the connection and determines where it should
be routed next. The ztunnel will inspect the L3 packet to determine
the source (what workload originated the packet) and destination
(the target). The ztunnel will map the source address to a crypto‐
graphic identity using SPIFFE-based certificates, which will be used
as the source side of an mTLS connection.

The ztunnel keeps track of all the identities present in the specific
node/host and can map the source workload to the cryptographic
identity on the fly. The ztunnel gets the identity certificates from
Istiod by sending a CSR on behalf of the workload. The ztunnel can
request a source workload’s key/certificate pair to be signed via CSR

Understanding How Istio Ambient Architecture Works | 31

for only service accounts used by pods running on the co-located
node. Once the source and destination are identified, the ztunnel
will initiate an mTLS connection over the HBONE tunnel.

If the destination has a waypoint proxy, the connection from the
ztunnel will be made to the waypoint proxy, which will terminate
the destination side of the mTLS connection. If there is no waypoint
proxy for the destination, the ztunnel will load-balance the connec‐
tion to the ztunnel on the node where the destination pod exists
(Figure 3-3).

Figure 3-3. Traffic will go directly to the destination ztunnel over
mTLS, with the ztunnel resolving the correct identity certificates to use,
when there is no destination waypoint proxy

The ztunnel on the destination node will terminate mTLS, enforce
any L4 authorization policies, and send the connection to the desti‐
nation pod.

Destination Proxy Terminates mTLS and Handles Traffic
At this point, the “destination proxy” in our scenario can be the
ztunnel on one of the nodes where the destination workload is
deployed or the waypoint proxy that has its own identity (see
Figure 3-4).

If the destination proxy is the waypoint proxy, the waypoint proxy
will terminate the mTLS connection using its own certificate. Once
the mTLS connection is terminated, the stream is parsed (to under‐
stand HTTP, gRPC, etc.) and various L7 policies can be applied.
Once the L7 policies are enforced, an mTLS connection, using the
waypoint’s identity certificates, is made from the waypoint proxy to
the target destination ztunnel.

32 | Chapter 3: Exploring Istio Ambient Mode

Figure 3-4. Traffic will go through a waypoint proxy for L7 policy
enforcement

Traffic Gets Sent to Destination Workload
Once traffic makes it to the ztunnel on the node where the destina‐
tion workload pod is deployed, the ztunnel will terminate the mTLS
connection (whether that’s from a downstream ztunnel or waypoint
proxy), enforce any L4 authorization policies if they exist, and then
deliver the connection to the pod that represents the destination
workload. The workload that receives this connection will process
the connection without knowledge of ambient mode and optionally
return a response.

Wrapping Up
We covered a lot in this chapter, from components installed as
part of the Istio ambient profile to benefits provided by ambient
mode and how to incrementally adopt ambient mode from the
secure overlay layer to the L7 processing layer. We also explained
how Istio ambient mode architecture works. We are very excited
about how easy it is to include your applications in ambient while
keeping them exactly the same and the tremendous benefits ambient
mode can bring you with the two-layer approach. If you use Istio
sidecars today, sidecars and ambient are interoperable. Combined
with the same Istio APIs (we covered Gateway, VirtualService, and
DestinationRule resources), this enables you to easily choose or
switch to the data plane architecture that is appropriate for your
requirements.

Wrapping Up | 33

CHAPTER 4

Key Takeaways and Next Steps

Istio ambient mode significantly simplifies the experience of adopt‐
ing a service mesh. Istio ambient mode is transparent to the
applications, bringing much broader application support, simplified
operation, and reduced infrastructure cost.

If you have considered service mesh or Istio in the past but have
walked away due to the complexity or operation cost of sidecars,
you should evaluate ambient mode. Istio ambient mode is designed
to help you deploy and manage applications transparently and at a
lower total cost of ownership.

Takeaways
A service mesh is a foundational infrastructure layer necessary to
support running microservices on containers. After reading this
book, you should have a better understanding of the following
points:

• Service mesh allows you to connect, secure, and observe your•
services.

• Istio ambient mode implements a “sidecar-less” architecture•
that is transparent to the workloads in the mesh.

• Ambient mode reduces operational and runtime overhead.•
• Istio ambient mode introduces an innovative two-layer•

approach that separates the secure overlay layer from the L7
processing layer. This allows you to better incrementally adopt

35

service mesh based on your need and pay for only what you
need.

• ztunnel and waypoint proxies are key components introduced•
in Istio ambient mode. The two-layer approach reduces the
CVEs for ztunnel.

• Istio ambient mode is designed to support more workloads than•
what’s possible with a sidecar. mTLS is enforced by default for
all workloads in ambient mode.

• Istio ambient mode is designed to simplify day two operations•
and save infrastructure cost.

• Istio ambient mode supports Kubernetes Gateway API and is•
backward compatible with most of the classic Istio APIs.

• Interoperability of sidecar-based deployments with workloads•
in Istio ambient mode helps ensure a more seamless migration.

Next Steps
We hope we have sparked your interest in service mesh and Istio
ambient mode. If you would like more information, we recommend
you check out the following resources:

• Visit the Istio “Concepts” documentation to learn more about•
the features that Istio provides and better understand the details
of Istio architecture.

• The “Introducing Ambient Mesh” blog post provides an intro‐•
duction to ambient mode and why the new data plane without
sidecar was born. It also contains a short video in which Chris‐
tian runs through the Istio ambient mode components and
demos some capabilities.

• The “Get Started” guide provides step-by-step instructions to•
help you get started with ambient mode and experience the
secure overlay layer with mTLS and L4 authorization policy, and
the L7 processing layer with L7 authorization policy, telemetry,
and traffic management.

• The Istio “Ambient Mesh Security Deep Dive” blog post digs•
into the security implications of Istio ambient mode, comparing
it with sidecars.

36 | Chapter 4: Key Takeaways and Next Steps

https://oreil.ly/kTkKP
https://oreil.ly/5ZXUI
https://oreil.ly/eBbYD
https://oreil.ly/nbTHl

• In the “Istio Ambient Mesh: What Does It Mean to You?” live‐•
stream recording, a few ambient mode contributors celebrate
the launch of ambient mode and share what ambient mode
means to Istio users from their perspectives.

• “Egress Gateways Made Easy” digs into a much simpler configu‐•
ration for L7 egress control.

• As shown in “Ambient Mesh: Can Sidecar-less Istio Make Appli‐•
cations Faster?”, Istio ambient mode makes applications faster
than the baseline: a service mesh usually is seen as adding
overhead (however minimal it may be), but in the case of Istio
ambient mode, the mesh path may be faster than the baseline
nonmesh path.

• The “Using Istio in Ambient Mode—Do More for Less!” blog•
post explores how Istio ambient mode was designed to reduce
the service mesh infrastructure resources typically associated
with sidecars.

When you are ready, the next logical step is to apply what you have
learned on your own projects to truly see the value you can achieve
with Istio service mesh in ambient mode.

Next Steps | 37

https://oreil.ly/AAEQZ
https://oreil.ly/AAEQZ
https://oreil.ly/7Alnf
https://oreil.ly/HzE8u
https://oreil.ly/HzE8u
https://oreil.ly/ex_WP
https://oreil.ly/ex_WP

About the Authors
Lin Sun is the head of open source at Solo.io and a CNCF TOC
member and ambassador. She has worked on the Istio service mesh
since the beginning of the project in 2017 and serves on the Istio
Steering Committee and the Technical Oversight Committee. Pre‐
viously, she was a senior technical staff member and master inven‐
tor at IBM for 15+ years. She coauthored Istio Ambient Explained
(O’Reilly) and has more than 200 patents to her name.

Christian Posta (@christianposta) is VP, global field CTO at Solo.io.
He is a coauthor of Istio in Action (Manning) as well as many other
books on cloud native architecture. He is well known in the cloud
native community for being a speaker, blogger, and contributor to
various open source projects in the service mesh and cloud native
ecosystem (Istio, Kubernetes, etc.). Christian has spent time at gov‐
ernment and commercial enterprises as well as web-scale companies
and now helps organizations create and deploy large-scale, cloud
native, resilient, distributed architectures. He enjoys mentoring,
training, and leading teams to be successful with distributed sys‐
tems concepts, microservices, DevOps, and cloud native application
design.

https://blog.christianposta.com

	Cover
	Solo.io
	Copyright
	Table of Contents
	Foreword
	Chapter 1. Introducing Istio Ambient Mode
	Current Challenges
	Benefits of Istio Ambient Mode
	Additional Benefits
	What About the Sidecar?

	Chapter 2. Istio Ambient Architecture
	Istio Ambient Mode
	Secure Overlay Layer
	Waypoint Proxy Layer
	Istio CNI Plug-in
	HTTP-Based Overlay Network Environment

	Ambient Is Designed for Scale and Security
	Why Did We Rewrite ztunnel from Scratch?
	Is the Ambient Architecture Susceptible to Noisy Neighbor Problems?
	Does Ambient Mode Cause an Increase in Latency?
	What About Security?

	Wrapping Up

	Chapter 3. Exploring Istio Ambient Mode
	The Ambient Profile
	The Benefits of Running Your Applications in Ambient
	Simplified Operation
	Better Incremental Adoption
	Simpler Application Onboarding
	Reduced Infrastructure Cost

	Incrementally Adopting Ambient
	Securing Inbound Traffic
	Including Workloads in Ambient
	What Have You Gained?
	L7 Processing

	Understanding How Istio Ambient Architecture Works
	Source Workload Initiates a Call to Another Service
	ztunnel Handles the Traffic and Initiates mTLS
	Destination Proxy Terminates mTLS and Handles Traffic
	Traffic Gets Sent to Destination Workload

	Wrapping Up

	Chapter 4. Key Takeaways and Next Steps
	Takeaways
	Next Steps

	About the Authors

