
1

Service Mesh for
Developers, Part 1:
Exploring the Power
of Observability and
OpenTelemetry

eBook

2

Table of Contents

Introduction	 3

Understanding Observability and Service Mesh	 4

What is OpenTelemetry	 5

OpenTelemetry Collector	 6

Distributed Tracing with OpenTelemetry Collector	 7

OpenTelemetry Collector Components	 8

Metrics Collection with OpenTelemetry	 9

Logging and OpenTelemetry	 10

Transport Telemetry Across Your Complex Topology	 11

8 Best Practices for Effective Debugging with OpenTelemetry	 12

Conclusion	 14

3

Introduction
In today’s complex application landscapes, observability is crucial for
debugging intricate systems. With service mesh architectures, developers
have powerful tools to enhance observability and streamlined ebugging. In
this eBook, we embark on a journey to explore how observability within a
service mesh improves application debugging.

In the first eBook of the series, we explore the benefits and techniques of
using observability within a service mesh for effective debugging. We explain
how observability helps to understand complex systems and how service
mesh provides features like distributed tracing, metrics, and logging for
valuable insights into application behavior.

Throughout the series, we cover various aspects of observability, including
testing in production and live debugging. We’ll leverage observability tools,
such as OpenTelemetry, within a service mesh to uncover real-time insights,
validate application behavior, and promptly resolve issues, ensuring reliable
and high-performing applications.

4

Understanding Observability
and Service Mesh
Observability helps us understand and debug complex systems by providing
insights into application behavior. It allows us to identify and resolve issues
effectively, ensuring system reliability and performance. With observability,
we gain visibility into request flows, errors, and system performance that can
enable us to improve our applications.

In essence, observability helps us understand and debug complex systems, while service mesh architectures provide
integration of different observability tools. By leveraging distributed tracing, metrics, and logging,developers gain valuable
insights to troubleshoot effectively and ensure optimal system performance.

Service mesh architectures, such as Istio, enhance
observability by offering features that include:

Distributed tracing tracks request journeys,
identifying bottlenecks and performance issues.

Metrics provide quantitative data on response times,
errors, and resource utilization.

Logging captures events and messages, aiding issue
tracking and troubleshooting.

5

What is OpenTelemetry
OpenTelemetry (OTel) helps developers achieve observability in their
applications by collecting crucial data for understanding and debugging.
Instrumenting applications with OpenTelemetry captures telemetry data on
requests, errors, and performance, facilitating efficient problem-solving.

The value of OpenTelemetry is enhanced by
its compatibility with different service mesh
implementations. The service mesh manages
communication between application components,
and OpenTelemetry seamlessly integrates with them.
This flexibility allows developers to choose monitoring
tools without impact on the application.

OTel is based on the three pillars of Observability:

Logs capture textual records of events

Traces provide a distributed view of request flows

Logging quantify performance and behavior

6

OpenTelemetry Collector
OpenTelemetry is an open-source observability framework that provides
APIs and SDKs for instrumenting applications. The OpenTelemetry
Collector is a separate component that collects, processes, and exports
telemetry data from various sources, acting as a flexible intermediary with
customization capabilities.

7

Distributed Tracing with
OpenTelemetry Collector
OpenTelemetry facilitates distributed tracing in the
service mesh. It helps track requests as they move through
different parts of our system and applications, providing
insights into their flow and behavior.

To enable trace stitching, tracing tools require the passage
of information through headers. As a result,developers must
design their applications to appropriately propagate the
relevant headers.

In the depicted image, the Tracing Client establishes a
direct connection with the Tracing Backend. However, in
complex topologies, such direct connections may not be
feasible, especially in distributed systems.

In OTel, these are:

Trace Context Headers: The most essential
headers for trace propagation are traceparent
and tracestate. Traceparent contains the trace ID,
span ID, and trace flags, while tracestate includes
additional contextual information.

Correlation Headers: Headers like correlation-id
or x-correlation-id help correlate related requests
across different services or components.

Baggage Headers: Baggage headers like
baggage-{key} are used to propagate custom
contextual information throughout the trace.

8

OpenTelemetry Collector Components
To enable distributed tracing, OpenTelemetry utilizes the OpenTelemetry Collector, which has components like receivers,
processors, and exporters. Receivers collect tracing data from various sources,processors enhance and manipulate the
data, and exporters send it to external systems or visualization tools.

For example, in Istio, data emitted from the sidecar proxies is captured by the OpenTelemetry Collector,allowing us to
visualize the request flow. By integrating with tools like Jaeger or Zipkin, we can gain insights into request journeys, identify
performance issues, and resolve errors.

9

For example, when instrumenting service mesh with OpenTelemetry
Collector, we collect metrics for analysis. OpenTelemetry Collector
integrates with a service mesh, scraping metrics that are made
available from the sidecar proxies next to your services. We export
these metrics to Prometheus or Grafana, visualizing response times,
error rates, and resource utilization. This helps identify bottlenecks
and troubleshoot issues.

Using Istio as the service mesh empowers operators to enhance
the monitoring experience by providing the ability to manipulate
the metrics exposed by Envoy, enabling greater control over the
data received by backends. Later in the eBook, we will explore how
Grafana can assist with visualization.

Distributed Tracing with OpenTelemetry Collector
collects and exports metrics from applications
within a service mesh, providing valuable insights
into application performance.

Metrics present a different complexity compared
to tracing. Unlike tracing, where information is
pushed, the model for metrics involves pulling
data. Consequently, a client like Prometheus is
required alongside the application. To prevent
public exposure of metric endpoints, the client
is deployed next to the applications and directly
targets the container.

The OpenTelemetry Collector separates
the application’s deployment location from
Prometheus by employing a client that carries out
similar tasks to Prometheus.

Metrics exporters in OpenTelemetry Collector
send collected metrics to monitoring systems like
Prometheus. These systems visualize and analyze
the metrics, offering information on application
health and performance.

Metrics Collection with OpenTelemetry

10

Logging and OpenTelemetry

To implement logging with OpenTelemetry Collector,
configure it to collect and forward logs to log analysis tools
like ELK Stack, Splunk or Loki.

The OpenTelemetry Collector aids in debugging by
integrating with logging frameworks to capture detailed
application logs.

As you can see in the picture, without an OTelCollector,
you need an agent (i.e. fluentbit) to collect the application
logs. That means adding another tool to the stack which
then, needs to be maintained

11

Transport Telemetry Across Your Complex Topology
Transporting telemetry across a complex topology becomes seamless with the OpenTelemetry Collector. By leveraging
this powerful tool, developers can effortlessly combine multiple collectors to gather and transmit telemetry data
from various sources. With the OpenTelemetry Collector, the complexities of transporting telemetry across diverse
components are efficiently managed, enabling comprehensive observability and streamlined monitoring in even the
most intricate environments.

As shown in the picture below, you have the flexibility to configure multiple collectors that transmit Telemetry signals
to other collectors across different clusters using the standard OTel protocol, OTLP. This capability centralizes the
operational control of communication within a single component, the collector, instead of relying on individual proxies
when using a service mesh.

Many popular providers such as Grafana Cloud, Dynatrace,
Datadog, New Relic, Instana, and others actively support
and facilitate the integration of OpenTelemetry (OTel) by
embracing the OpenTelemetry Protocol(OTLP). This allows
for easier and more seamless integration of OTel with
these providers’ services and tools.

12

8 Best Practices for Effective Debugging with
OpenTelemetry

01 02

03 04

Comprehensive instrumentation

Ensure thorough instrumentation of your applications
using OpenTelemetry to capture relevant telemetry data.
In the case of using a service mesh (like Gloo Mesh), the
platform does this for you.

Trace context propagation

Utilize OpenTelemetry’s context propagation
mechanism to maintain trace context across distributed
components of your application. This allows you to
follow the path of a request through different services
and identify potential bottlenecks or issues. In the case
of service mesh such as Istio and platforms built on top
of them (like Gloo Mesh), this task is reduced to just
propagating headers.

Granular trace sampling

Configure trace sampling rates appropriately to balance
the volume of collected traces with the overhead of
capturing and processing them. Adjust the sampling rate
based on the importance and performance impact of
specific operations or services.

Log correlation

Correlate logs with traces by including trace identifiers
(such as trace IDs and span IDs) in log entries. This
correlation helps in linking log events with specific
trace spans, enabling easier troubleshooting and
understanding of the request flow.

https://www.solo.io/products/gloo-mesh
https://www.solo.io/products/gloo-mesh

13

05 06

07 08

Error handling and logging

Implement robust error handling mechanisms and
log errors and exceptions with relevant context. Use
structured logging formats and include essential details
such as error codes, timestamps, and relevant request
information. This helps in pinpointing the source of
errors during debugging.

Custom attributes and metadata

Leverage OpenTelemetry’s ability to add custom attributes
and metadata to captured telemetry data. Include additional
contextual information, such as user IDs, session IDs, or
specific request parameters, to enhance the visibility and
understanding of application behaviour during debugging. As
well as removing any sensitive data like passwords or keys
that should not be exposed.

Visualization and analysis tools

Utilize visualization and analysis tools compatible with
OpenTelemetry, such as observability platforms or logging
solutions like ELK Stack or Grafana. These tools provide a
rich set of features for visualizing and analyzing telemetry
data, making it easier to spot anomalies, detect patterns,
and identify performance issues.

Collaboration and knowledge sharing

Foster collaboration among developers and teams
by sharing telemetry data and insights captured by
OpenTelemetry. Collaborative debugging sessions, code
reviews, and post-mortem analyses can help in identifying
and resolving complex issues more efficiently.

14

Conclusion
OpenTelemetry offers significant benefits for observability and debugging within a service mesh. It provides a standardized
approach to capture metrics, traces, and logs, enabling developers to gain deep insights into their applications’ behavior. By
incorporating OpenTelemetry into the development process, developers can proactively monitor and debug their services,
ensuring optimal performance.

OpenTelemetry provides a holistic view of the system’s behavior and it gives us visibility into complex architecture. This allows
developers to pinpoint performance bottlenecks, and optimize their applications.

In the next eBook of the series, we’ll shift our focus to an intriguing aspect of application development: Testing in Production.
In Debugging: Mastering Testing in Production within a service mesh, we will explore how observability, within the service mesh
architecture, enables us to conduct thorough testing in live production environments. We will uncover the benefits of testing
in production, discuss different strategies and techniques, and showcase practical examples of how observability empowers
developers to validate application behavior and ensure reliability in real-world scenarios. Join us!

Test drive Gloo Mesh Core today by requesting a free
trial. If you still have questions (or just want to reach out
with feedback), we have a community Slack channel
available for anyone to join and chat with us. We’d love
to hear from you!Try Gloo Mesh

Core Today! Get a Free Trial Join Our Slack

https://www.solo.io/free-trial/
https://slack.solo.io/

