
  eBook

Service Mesh for Developers, Part 1: 
Exploring the Power of
Observability and OpenTelemetry



Introduction

Understanding Observability and Service Mesh

What is OpenTelemetry

OpenTelemetry Collector

Distributed Tracing with OpenTelemetry Collector

OpenTelemetry Collector Components

Metrics Collection with OpenTelemetry

Logging and OpenTelemetry

Transport Telemetry Across Your Complex Topology

8 Best Practices for Effective Debugging with OpenTelemetry

Conclusion

3

4

5

6

7

8

9

10

11

12

14

Table of Contents



Introduction
In today’s complex application landscapes, observability is crucial for debugging intricate systems. With
service mesh architectures, developers have powerful tools to enhance observability and streamline
debugging. In this eBook, we embark on a journey to explore how observability within a service mesh
improves application debugging.

In the first eBook of the series, we explore the benefits and techniques of using observability within a service
mesh for effective debugging. We explain how observability helps to understand complex systems and how
service mesh provides features like distributed tracing, metrics, and logging for valuable insights into
application behavior.

Throughout the series, we cover various aspects of observability, including testing in production and live
debugging. We’ll leverage observability tools, such as OpenTelemetry, within a service mesh to uncover real-
time insights, validate application behavior, and promptly resolve issues, ensuring reliable and high-
performing applications.

3



Observability helps us understand and debug complex systems
by providing insights into application behavior. It allows us to
identify and resolve issues effectively, ensuring system reliability
and performance. With observability, we gain visibility into
request flows, errors, and system performance that can enable
us to improve our applications.

Service mesh architectures, such as Istio, enhance
observability by offering features that include: 

Distributed tracing tracks request journeys,
identifying bottlenecks and performance issues.
Metrics provide quantitative data on response
times, errors, and resource utilization.
Logging captures events and messages, aiding
issue tracking and troubleshooting.

Understanding Observability and Service Mesh

In essence, observability helps us understand and debug complex systems, while service mesh architectures
provide integration of different observability tools. By leveraging distributed tracing, metrics, and logging,
developers gain valuable insights to troubleshoot effectively and ensure optimal system performance.

4



What is OpenTelemetry
OpenTelemetry (OTel) helps developers achieve observability in their applications by collecting crucial data for
understanding and debugging. Instrumenting applications with OpenTelemetry captures telemetry data on
requests, errors, and performance, facilitating efficient problem-solving.

The value of OpenTelemetry is
enhanced by its compatibility with
different service mesh
implementations. The service mesh
manages communication between
application components, and
OpenTelemetry seamlessly
integrates with them. This flexibility
allows developers to choose
monitoring tools without impact on
the application.

OTel is based on the three pillars of Observability:

Logs capture textual records of events
Traces provide a distributed view of request flows
Metrics quantify performance and behavior

5

https://opentelemetry.io/


OpenTelemetry Collector
OpenTelemetry is an open-source observability framework that provides APIs and SDKs for instrumenting
applications. The OpenTelemetry Collector is a separate component that collects, processes, and exports
telemetry data from various sources, acting as a flexible intermediary with customization capabilities.

6

https://opentelemetry.io/docs/collector/


OpenTelemetry facilitates distributed tracing in the service mesh. It helps track requests as they move
through different parts of our system and applications, providing insights into their flow and behavior.

To enable trace stitching, tracing tools require the passage of information through headers. As a result,
developers must design their applications to appropriately propagate the relevant headers. 

In OTel, these are:

Trace Context Headers: The most essential headers for trace propagation are traceparent and
tracestate. traceparent contains the trace ID, span ID, and trace flags, while tracestate includes
additional contextual information.
Correlation Headers: Headers like correlation-id or x-correlation-id help correlate related requests
across different services or components.
Baggage Headers: Baggage headers like baggage-{key} are used to propagate custom contextual
information throughout the trace.

Distributed Tracing with OpenTelemetry Collector

In the depicted image, the Tracing Client
establishes a direct connection with the
Tracing Backend. However, in complex
topologies, such direct connections may not
be feasible, especially in distributed systems.

7



To enable distributed tracing, OpenTelemetry utilizes the OpenTelemetry Collector, which has
components like receivers, processors, and exporters. Receivers collect tracing data from various sources,
processors enhance and manipulate the data, and exporters send it to external systems or visualization
tools.

OpenTelemetry Collector Components

For example, in Istio, data emitted from the sidecar proxies is captured by the OpenTelemetry Collector,
allowing us to visualize the request flow. By integrating with tools like Jaeger or Zipkin, we can gain
insights into request journeys, identify performance issues, and resolve errors.

8



OpenTelemetry Collector collects and exports
metrics from applications within a service mesh,
providing valuable insights into application
performance.

Metrics present a different complexity
compared to tracing. Unlike tracing, where
information is pushed, the model for metrics
involves pulling data. Consequently, a client like
Prometheus is required alongside the
application. To prevent public exposure of
metric endpoints, the client is deployed next to
the applications and directly targets the
container.

The OpenTelemetry Collector separates the
application’s deployment location from
Prometheus by employing a client that carries
out similar tasks to Prometheus.

Metrics exporters in OpenTelemetry Collector
send collected metrics to monitoring systems
like Prometheus. These systems visualize and
analyze the metrics, offering information on
application health and performance.

Metrics Collection with OpenTelemetry

For example, when instrumenting service mesh with
OpenTelemetry Collector, we collect metrics for analysis.
OpenTelemetry Collector integrates with a service mesh,
scraping metrics that are made available from the sidecar
proxies next to your services. We export these metrics to
Prometheus or Grafana, visualizing response times, error
rates, and resource utilization. This helps identify
bottlenecks and troubleshoot issues.

Using Istio as the service mesh empowers operators to
enhance the monitoring experience by providing the
ability to manipulate the metrics exposed by Envoy,
enabling greater control over the data received by
backends.

Later in the eBook, we will explore how Grafana can assist
with visualization.

9

https://opentelemetry.io/docs/collector/
https://opentelemetry.io/docs/collector/
https://opentelemetry.io/docs/collector/
https://opentelemetry.io/docs/collector/
https://opentelemetry.io/docs/collector/
https://opentelemetry.io/docs/collector/
https://opentelemetry.io/docs/collector/
https://opentelemetry.io/docs/collector/
https://opentelemetry.io/docs/collector/
https://opentelemetry.io/docs/collector/
https://opentelemetry.io/docs/collector/
https://opentelemetry.io/docs/collector/
https://opentelemetry.io/docs/collector/
https://opentelemetry.io/docs/collector/
https://opentelemetry.io/docs/collector/
https://opentelemetry.io/docs/collector/
https://opentelemetry.io/docs/collector/
https://opentelemetry.io/docs/collector/
https://opentelemetry.io/docs/concepts/instrumentation/
https://istio.io/latest/docs/tasks/observability/metrics/
https://istio.io/latest/docs/tasks/observability/metrics/
https://istio.io/latest/
https://istio.io/latest/docs/tasks/observability/metrics/telemetry-api/
https://www.envoyproxy.io/docs/envoy/latest/
https://grafana.com/


The OpenTelemetry Collector aids in debugging
by integrating with logging frameworks to
capture detailed application logs.

As you can see in the picture, without an OTel
Collector, you need an agent (i.e. fluentbit) to
collect the application logs. That means adding
another tool to the stack which then, needs to be
maintained.

Logging and OpenTelemetry

To implement logging with
OpenTelemetry Collector, configure it to
collect and forward logs to log analysis
tools like ELK Stack, Splunk or Loki.

10

https://www.elastic.co/
https://www.splunk.com/
https://grafana.com/oss/loki/


Transport Telemetry Across Your Complex Topology
Transporting telemetry across a complex topology becomes seamless with the OpenTelemetry Collector. By
leveraging this powerful tool, developers can effortlessly combine multiple collectors to gather and transmit
telemetry data from various sources. With the OpenTelemetry Collector, the complexities of transporting
telemetry across diverse components are efficiently managed, enabling comprehensive observability and
streamlined monitoring in even the most intricate environments.

As shown in the picture below, you have the flexibility to configure multiple collectors that transmit Telemetry
signals to other collectors across different clusters using the standard OTel protocol, OTLP. This capability
centralizes the operational control of communication within a single component, the collector, instead of
relying on individual proxies when using a service mesh.

Many popular providers such as Grafana Cloud,
Dynatrace, Datadog, New Relic, Instana, and
others actively support and facilitate the
integration of OpenTelemetry (OTel) by
embracing the OpenTelemetry Protocol
(OTLP). This allows for easier and more
seamless integration of OTel with these
providers’ services and tools.

11



1. Comprehensive instrumentation: Ensure thorough instrumentation of your
applications using OpenTelemetry to capture relevant telemetry data. In the case
of using a service mesh (like Gloo Mesh), the platform does this for you.

2. Trace context propagation: Utilize OpenTelemetry’s context propagation
mechanism to maintain trace context across distributed components of your
application. This allows you to follow the path of a request through different
services and identify potential bottlenecks or issues. In the case of service mesh
such as Istio and platforms built on top of them (like Gloo Mesh), this task is
reduced to just propagating headers.

3. Granular trace sampling: Configure trace sampling rates appropriately to
balance the volume of collected traces with the overhead of capturing and
processing them. Adjust the sampling rate based on the importance and
performance impact of specific operations or services.

4. Log correlation: Correlate logs with traces by including trace identifiers (such
as trace IDs and span IDs) in log entries. This correlation helps in linking log
events with specific trace spans, enabling easier troubleshooting and
understanding of the request flow.

8 Best Practices for Effective Debugging with
OpenTelemetry

12

https://www.solo.io/products/gloo-mesh/
https://www.solo.io/products/gloo-mesh/


5. Error handling and logging: Implement robust error handling mechanisms
and log errors and exceptions with relevant context. Use structured logging
formats and include essential details such as error codes, timestamps, and
relevant request information. This helps in pinpointing the source of errors
during debugging.

6. Custom attributes and metadata: Leverage OpenTelemetry’s ability to add
custom attributes and metadata to captured telemetry data. Include additional
contextual information, such as user IDs, session IDs, or specific request
parameters, to enhance the visibility and understanding of application behaviour
during debugging. As well as removing any sensitive data like passwords or keys
that should not be exposed.

7. Visualization and analysis tools: Utilize visualization and analysis tools
compatible with OpenTelemetry, such as observability platforms or logging
solutions like ELK Stack or Grafana. These tools provide a rich set of features for
visualizing and analyzing telemetry data, making it easier to spot anomalies,
detect patterns, and identify performance issues.

8. Collaboration and knowledge sharing: Foster collaboration among
developers and teams by sharing telemetry data and insights captured by
OpenTelemetry. Collaborative debugging sessions, code reviews, and post-
mortem analyses can help in identifying and resolving complex issues more
efficiently.

8 Best Practices for Effective Debugging with
OpenTelemetry (cont.)

13



Get a Free Trial Join Our Slack

OpenTelemetry offers significant benefits for observability and debugging within a service mesh. It provides a
standardized approach to capture metrics, traces, and logs, enabling developers to gain deep insights into
their applications’ behavior. By incorporating OpenTelemetry into the development process, developers can
proactively monitor and debug their services, ensuring optimal performance.

OpenTelemetry provides a holistic view of the system’s behavior and it gives us visibility into complex
architecture. This allows developers to pinpoint performance bottlenecks, and optimize their applications. 

In the next eBook of the series, we’ll shift our focus to an intriguing aspect of application development: Testing
in Production. In Debugging: Mastering Testing in Production within a service mesh, we will explore how
observability, within the service mesh architecture, enables us to conduct thorough testing in live production
environments. We will uncover the benefits of testing in production, discuss different strategies and
techniques, and showcase practical examples of how observability empowers developers to validate
application behavior and ensure reliability in real-world scenarios. Join us! 

Test drive Gloo Mesh Core today by requesting a free trial. If you
still have questions (or just want to reach out with feedback), we
have a community Slack channel available for anyone to join
and chat with us. We’d love to hear from you!

Try Gloo Mesh Core Today!

Conclusion

https://www.solo.io/free-trial/
https://slack.solo.io/

