


https://www.solo.io/?&utm_source=web&utm_medium=direct&utm_campaign=FY25_WW_CON_&utm_content=solo-homepage


Christian Posta

Omni-Directional API
Management for Platform

Engineering
Modern API Management in the Cloud

and AI World



978-1-098-17797-3

[LSI]

Omni-Directional API Management for Platform Engineering
by Christian Posta

Copyright © 2025 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://oreilly.com). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: John Devins
Development Editor: Gary O’Brien
Production Editor: Aleeya Rahman
Copyeditor: Penelope Perkins

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

October 2024:  First Edition

Revision History for the First Edition
2024-10-10: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Omni-Directional
API Management for Platform Engineering, the cover image, and related trade dress
are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the
publisher’s views. While the publisher and the author have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the author disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and Solo.io. See our statement
of editorial independence.

http://oreilly.com
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence


Table of Contents

1. The Need for Modern API Management. . . . . . . . . . . . . . . . . . . . . . . . .  1
Improving Challenges Around API Delivery                                  1
Emerging Use Cases Around AI and LLM Usage                           3
Existing API Management Is Outdated                                            3
Modern API Management                                                                  4
Platform Engineering to the Rescue                                                  6

2. Foundations Are Important. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9
Foundation of a Modern Gateway                                                   10
Architecture for Flexibility, Automation, Decentralization,

and Delegation                                                                                12
Providing API Management for an Internal Developer

Platform                                                                                           15
Microgateway Architecture for Tenancy                                        16
Bringing API Management to Traffic in All Directions               17

3. Omni-Directional API Management. . . . . . . . . . . . . . . . . . . . . . . . . . .  19
Using a Service Mesh for East-West API Traffic                           20
Enabling Omni-Directional API Management with Istio

Ambient                                                                                           25
Bringing It All Together                                                                    28

4. Tying Omni-Directional API Management into Your Platform. . . . .  29
Building Golden Paths                                                                      31
Adopting Omni-Directional API Management in Your

Platform                                                                                           33
Improving Self-Service, Resilience, and Innovation                    34

v



CHAPTER 1

The Need for Modern API
Management

Time is a scarce resource. The amount of time we save in our daily
lives compared to years ago is unbelievable. Remember when we
needed to make a phone call to book air travel? Or call a taxi,
sit around, and hope it shows up? The amount of self-service and
improved experience we get from technology (funnily enough, from
our phones) allows us to get more done in less time and focus on
things that are more valuable.

Well, ideally. Damn social media!

T-Mobile did a deep investigation into why its API teams had trou‐
ble delivering software quickly and safely. They found that 25% of
API developers’ time was wasted on nonfunctional overhead and
requirements (i.e., filing tickets and waiting). Additionally, 75% of
the problems they faced in production were due to networking
configuration changes. The direct translation from time to money
is clear. We need to improve our API delivery. If we could save
this wasted money and time, we could invest in something more
valuable, like new features.

Improving Challenges Around API Delivery
APIs underpin the digital experiences an organization delivers to its
customers. Through a website, mobile app, or partner integrations,
adding new functionality involves making changes or delivering

1

https://oreil.ly/QnY2r


new APIs. The speed and safety of API delivery is a serious business
differentiator. Bottlenecks, inefficiencies, and outages cost a business
in opportunity and real money. A modern API management system
needs to enable self-service and tenancy, while reducing the blast
radius of changes to help an organization achieve its business goals.

Unfortunately, API developers sometimes have to wait two or more
weeks to get their changes reviewed, approved, and implemented.
Often the API developers need to open tickets to get this work done,
meaning another team must complete some task, such as changing
the routing rules on an enterprise load balancer or updating an API
management system, before the developers can continue their own
work. The outdated technologies used in these API management
systems don’t lend themselves to automation or tenancy, so the
work is often done manually or by pointing and clicking on some
proprietary UI. This is slow and increases the risk of errors.

The DevOps movement focuses on some of these problems, reduc‐
ing the siloed nature of our IT organizations between Dev and Ops
and improving collaboration. Focusing on automation, collabora‐
tion, and shifting left are generally good practices, but in some cases
went too far—for example, pushing application teams to own and
manage their own Kubernetes platforms and distributions. Placing
the burden on application teams to own their infrastructure, includ‐
ing observability, security, CI/CD (continuous integration, continu‐
ous delivery), etc., overloads teams that don’t have the expertise
to own this infrastructure. Shifting too far to the left also causes
other problems, such as compliance, governance, and sprawl-related
issues.

The pendulum is swinging back these days in the form of “plat‐
form engineering” and hopefully will arrive at a happy medium:
reducing silos, improving tenancy, and giving teams autonomy with
access to what they need. For example, we see platform engineering
teams providing the tools, automation, and self-service workflows
for API developers to deploy new APIs or changes much faster.
These self-service capabilities also align with compliance, security,
and reliability goals.

2 | Chapter 1: The Need for Modern API Management

https://oreil.ly/ZH65U
https://oreil.ly/iHxEf
https://oreil.ly/iHxEf


Emerging Use Cases Around AI and LLM Usage
Artificial intelligence (AI) use cases with large language models
(LLMs) are a new class of API usage in enterprise applications and
are getting widespread adoption. LLM providers already have API
self-service, so why would an enterprise worry about making these
APIs available internally? What would they need to manage?

Today, any developer with a credit card can go to an LLM provider
and sign up to call its APIs. For example, a developer can go to the
OpenAI website, get an account, access tokens, and secret keys, and
start calling LLM APIs. How many developers are doing this? How
many access tokens and secret keys are littered around production?
Are they secured correctly or just floating about haphazardly? What
information is sent to the LLMs? Is it approved by IT and does
it meet compliance requirements? Are some teams overspending
through unintended usage or self-DoS (denial-of-service) type mis‐
takes? Is anyone monitoring or measuring any of this?

External API and LLM API usage creates spending, compliance,
and security risks for an enterprise organization. Modern API man‐
agement, which observes, controls, and secures egress traffic, is
necessary.

Existing API Management Is Outdated
Full lifecycle API management suites do not fit in today’s modern
platform engineering approach. The legacy API management ven‐
dors sell a “full lifecycle, do everything” solution that forces users
into the vendors’ opinionated view of the world with tools that are
not best of breed.

These older solutions are built on outdated technologies that are
inefficient, resource intensive, and make it difficult to support ten‐
ancy and self-service. For example, it’s difficult to automate a propri‐
etary UI in a CI/CD pipeline. Or the routing and load balancing
features are very coarse grained and rely on sending traffic to exter‐
nal load balancers, which themselves need to be configured out of
band.

Existing API Management Is Outdated | 3

https://oreil.ly/LsuI-
https://oreil.ly/PI6of
https://oreil.ly/PI6of


Organizationally, these solutions create more silos because they are
complex to operate, configure, and maintain. You need a dedicated
team to manage them. To make changes, you need to create tickets
for the “API Management” team. This wastes time.

These legacy solutions may have added point features to try to fit a
marketing message that better aligns with the needs of modern use
cases. Unfortunately, it’s not possible to take outdated API manage‐
ment tooling and fit it into modern workflows.

Modern API Management
Recently, the trend of “unbundling” your API management suite,
as coined by Erik Wilde, is in full swing. API management features
such as rate limiting, usage quotas, metrics/analytics, developer por‐
tals, OAuth/OIDC (OpenID Connect), and API key security are
common across all API management products (outdated or other‐
wise). In fact, if you’re looking for a modern API management
product, you won’t find it by comparing features because for the
most part, they’re almost all the same.

What really matters for modern API management use cases is how
the nonfunctional requirements fit with the rest of your workflows
and internal developer platforms. Modern API management is cen‐
tered around the four nonfunctional tenets (see Figure 1-1).

Figure 1-1. The four nonfunctional tenets of modern API
management.

Flexibility
APIs are meant to encapsulate functionality and standardize
how that functionality is invoked. Where they are deployed
should not matter—Windows, Linux, mainframes, big servers,
small servers, cloud servers, containers, Kubernetes, functions,

4 | Chapter 1: The Need for Modern API Management

https://oreil.ly/QzHbo


etc. A modern API management solution must be flexible
enough to provide the features shown in Figure 1-1 wherever
APIs may be deployed. It must also be flexible enough to be
deployed as close to the APIs as possible to give more fine-
grained control. A modern API management solution should
apply its fine-grained policy control and capabilities to traffic in
any direction: ingress, east-west, and egress. For more complex
scenarios, a modern API management system should be exten‐
sible so you can add customizations as necessary to interoperate
with a given environment.

Automation
Automation for a system like this is foundational. It’s okay to
have a UI dashboard, but the entire system should fit into
a declarative configuration pipeline typically seen in GitOps
workflows. Common configuration formats (rather than a pro‐
prietary, black box configuration) must also be used. Config‐
uring the API management system should be dynamic and
eventually consistent. Deploying large fleets of the API manage‐
ment system should be controlled and configured following
this automated approach, and the mechanism for configuring
the system should support updates to policy and infrastructure
without dropping connections or impacting traffic.

Decentralization
Building on the tenet of flexibility, a modern API management
system should be decentralized rather than tied to a specific
cloud or on-premises technology. Traffic should not have to
“hairpin” through some centralized system. Through decentral‐
ization, API teams should be able to own and configure their
API infrastructure with strong tenancy. A common configura‐
tion control plane may be used to “federate” the API infrastruc‐
ture to make it all behave as a single, common infrastructure.
Federation allows failures to happen with a blast radius scoped
to a specific tenant. A modern API management solution
should use consistent technology and features throughout, not
make trade-offs between centralized and decentralized deploy‐
ments.

Delegation
Lastly, a modern API management system should support a
delegated API model. Delegation means some parts of the API
configuration are intended to be configured by platform users,

Modern API Management | 5

https://oreil.ly/SsuaN
https://oreil.ly/SsuaN


while other parts are configured by API developers. Separating
the configuration of the API this way enables teams to work
in parallel without dependencies on each other, which speeds
up changes. With a delegated model, developers can configure
routing, transformation, and other route specific capabilities.
Delegation is key to tenancy, decentralization, and federation.

API developers should have the ability to pick the developer tools
they like to define, test, and implement their APIs. They should
be able to self-service deploy to an infrastructure that includes dash‐
boards for visibility of their changes and how their APIs get used or
behave. These tools should fit the way they want to work. What does
this look like in an enterprise?

Platform Engineering to the Rescue
Solving these API management challenges with legacy solutions
won’t work. At the other extreme, allowing developers to write
common API management functionality directly into their code
is a recipe for disaster. Choosing libraries and frameworks, across
multiple languages, to handle security, load balancing, rate limiting,
and other tasks create technical debt and consistency issues. Who’s
got the time to learn all these new technologies? Will they just be
point solutions for a developer’s immediate pain without taking into
account the organization? Will configuration and security issues
crop up because of the lack of governance and oversight? How will
this fit into the rest of the delivery pipeline or lifecycle?

For API developers to build and deliver APIs safely and securely
at a rapid frequency, the platform team needs to enable flexible
tool selection with self-service golden paths. A platform team can
make common choices available, while allowing developers to plug
in their own tools as needed.

Platform engineering teams are charged with improving developer
experience and compliance, eliminating inefficiencies, and generally
accelerating the delivery of business value. They select cloud tech‐
nologies such as containers, Kubernetes, CI/CD, observability, and
security tools that fit well together, can be automated, and improve
the ability to deliver software.

6 | Chapter 1: The Need for Modern API Management



Developers are finicky, however, and may push back on the tool‐
chains forced on them for building APIs. For example, legacy API
management systems have their own proprietary tools for defining
API contracts, generating mocks, and tying it all into the rest of the
lifecycle. A developer may find that tooling lacks certain features,
is difficult to use, or doesn’t support their development environ‐
ment. Postman, for example, is a popular client-side tool for testing,
designing, and debugging APIs; developers should have the option
to pick this tool and tie it in with the rest of the API platform.

On the other hand, when it comes to the deployment lifecycle,
including implementing security, cataloging APIs, gathering observ‐
ability metrics, and implementing resilience features like failover or
rate limiting, there should be automated golden paths for developers
to use.

Developers should be able to obtain the necessary access to deploy
APIs, make changes to routing, publish to a catalog, and so on via
self-service mechanisms, not by filing tickets and sitting around
and waiting. The platform team is responsible for creating the auto‐
mation and tooling to enable self-service for the developers. See
Figure 1-2 for how API management tools align with developers and
platforms.

Figure 1-2. Where API development and management tools fit in a
modern internal developer platform.

Platform Engineering to the Rescue | 7

https://oreil.ly/UZu7p


This report will dig into the foundations for platform teams to
provide an omni-directional, federated API management system
built on Cloud Native Computing Foundation (CNCF) technologies
such as Envoy, Istio, and others. These tools and technologies, com‐
bined with architecture, will enable scale, self-service, tenancy, and
improve security and compliance. This approach has been proven to
shorten the time needed for API developers to get their changes into
production safely.

8 | Chapter 1: The Need for Modern API Management



CHAPTER 2

Foundations Are Important

When thinking about modernizing your infrastructure, investing
time laying the right foundation is important. Not doing so can lead
to very costly and time consuming repairs, which could jeopardize
your modernization efforts. Similarly, large construction projects,
like building a skyscraper, require strong foundations. For example,
the Salesforce Tower in San Francisco, California, is 1,070 feet tall
and must withstand strong winds and earthquakes. The foundation
for this building took 18 hours to pour and is anchored deep into
the bedrock 300 feet below the surface (see Figure 2-1). Conversely,
another skyscraper in San Francisco did not implement a strong
foundation. The Millenium Tower has its foundation directly on the
soil and is not anchored into bedrock. The Millenium Tower has
been sinking and leaning since its construction was completed and
is now undergoing costly repairs to retrofit its foundation.

Just like in building materials, the foundational technologies of
your platform matter. Kubernetes is the right foundation to build
a modern cloud platform, but what’s right for API management?
Making the incorrect choice, or trying to cut corners, will end up
like the sinking Millennium Tower in San Francisco.

9

https://oreil.ly/rZeMF
https://oreil.ly/rZeMF
https://oreil.ly/Xcdib


Figure 2-1. San Francisco’s solid bedrock layer can be good for building
skyscrapers if the foundation is dug deeply enough and done correctly.
The right foundation is important for the intended use case.

One of the most important pieces of modern API management is an
API gateway. The API gateway plays a vital role in routing, policy
enforcement, security, quality of service, and observability. Most
API gateways on the market can perform these functions well, but
only a few were built in the modern era and with modern usage in
mind.

Foundation of a Modern Gateway
Envoy proxy is to API gateways what Kubernetes is to building
developer platforms: a powerful foundation upon which to build
for the modern era. Envoy is an open source project built to run
as a highly performant HTTP2 and gRPC proxy and load balancer
written in C++. It’s flexible and can be run as an ingress/egress
gateway, a microgateway, or even a sidecar proxy in a service mesh.
For example, it powers the Google Front End (GFE) service, which
handles all incoming traffic to Google Cloud. It can be used to
build API gateways such as the open source projects Gloo Gateway
and Ambassador’s Emissary-Ingress. Other reverse proxies, such as
NGINX, existed when Envoy hit the scene, so why is Envoy the right
choice?

10 | Chapter 2: Foundations Are Important

https://oreil.ly/UqR50
https://oreil.ly/DXbfL
https://oreil.ly/7Jefml
https://oreil.ly/CErN6
https://oreil.ly/hcP9O


Envoy proxy provides the foundational pieces for what’s needed in a
modern gateway:

• Bidirectional, dynamically configurable API•
• Service endpoint discovery and routing•
• Active and passive health checking•
• Multiple extensibility points•
• Standard integration points•

Envoy proxy was built to handle updates to its configuration
dynamically. This may sound trivial, but it’s crucial. Envoy pio‐
neered the xDS APIs, which are bidirectional, streaming APIs
between the proxy and a separate control plane. Envoy’s endpoints,
routes, security policies, observability, and so on can be dynamically
and continuously configured over a large fleet from a centralized
location without reload or downtime. In ephemeral infrastructure
environments, like container platforms, this is critical.

A big reason for Envoy’s open source community success and gen‐
eral adoption is that it’s very extensible. Envoy was built on a “pipes
and filter” architecture, where all of its functionality—from routing
and load balancing to security and observability—is built on exten‐
sible filters. These filters can be chained together in various ways
to get the desired behavior of a gateway. Envoy can also call out
to other systems over standard protocols (ext auth, OIDC, OAuth,
etc.) to implement security, enrichment, or observability (logging,
metrics, etc.).

Envoy, out of the box, is not an API gateway. To get table-stakes API
gateway features such as rate limiting, request/response transforma‐
tion, or a developer portal, we need to extend Envoy with additional
components and features.

Foundation of a Modern Gateway | 11

https://oreil.ly/2ncVm
https://oreil.ly/2ncVm
https://oreil.ly/X7vN0
https://oreil.ly/sxLZh
https://oreil.ly/sxLZh
https://oreil.ly/T7ROS
https://oreil.ly/T7ROS
https://oreil.ly/HmdYD
https://oreil.ly/s7dhe
https://oreil.ly/ssmbw
https://oreil.ly/62SYZ


Architecture for Flexibility, Automation,
Decentralization, and Delegation
Envoy provides the foundation for an API gateway, but just like
all good open source projects, it draws boundaries around what
features it will implement or expand into. Since Envoy is built to
fit many use cases (including an API gateway), it leaves the last
mile features and expansions to end users or vendors by way of an
extensibility model.

Projects like Gloo Gateway, Contour, and Emissary-Ingress extend
Envoy to add the features needed for it to be an API gateway. For
this report, I’ll use Gloo Gateway, which is built on Envoy proxy,
as an example of a modern API gateway. Gloo Gateway adds trans‐
formation, rate limiting, and more sophisticated security protocol
handling, such as OAuth 2.0, to create a full-blown API gateway.

As outlined in Chapter 1, flexibility, automation, decentralization,
and delegation are key tenets for a modern API management plat‐
form. The Gloo Gateway architecture and capabilities listed below
achieve these tenets and give a better fit for an internal developer
platform, as illustrated in Figure 2-2:

• Separation of control plane from data plane•
• Declarative configuration•
• Delegated configuration model•
• Federation/tenancy model•

Figure 2-2. Separate control plane and data plane alongside a dele‐
gated API for driving configuration better fits a decentralized API
management architecture.

12 | Chapter 2: Foundations Are Important



Separation of Control Plane from Data Plane
Envoy proxy handles requests and connections and is considered
the data plane. How does Envoy get its configuration? That’s where
the control plane comes into the picture. Getting infrastructure and
user configurations to the data plane is foundational for enabling
the type of flexibility and automation we need in our modern plat‐
forms. Envoy doesn’t ship with a control plane out of the box. A
number of Envoy control planes exist, and rolling your own is a
very risky and expensive undertaking. Gloo Gateway implements
a control plane for Envoy proxy and has been battle-tested at scale.

One important detail about the Envoy control plane is that it should
be built and deployed separately from the data plane. The control
plane often deals with sensitive data, connecting to a Kubernetes
API server or other sensitive systems, and should not be colocated
with the data plane. If the control plane is deployed separately, it can
suffer an outage and the data plane can continue to process requests.
Gloo Gateway is implemented with a separation of control plane
and data plane. It even provides a way to persist the last known
good configuration, which can help to overcome the ripple effects
often seen in outages when teams blindly restart things in an effort
to fix misbehaving infrastructure. This control plane/data plane sep‐
aration is a major difference between Gloo and Emissary-Ingress.

Declarative Configuration
Gloo Gateway’s configuration model is built on a declarative con‐
figuration. More specifically, it’s built as custom resources (CRs)
in Kubernetes using the Kubernetes Gateway API, a specification
driven by the Kubernetes community to standardize traffic routing
rules. Gloo Gateway implements the Kubernetes Gateway API and
adds extensions to support complex rate limiting, security protocols,
and other features not included in the specification. The fact that
Gloo Gateway is built on a declarative configuration makes it easy to
include the API gateway in a GitOps automation toolchain. Driving
everything through Git allows versioning, auditing, reviewing, and
controlled rollouts via something like Argo CD. It also allows you
to treat gateway configuration and policy as code and not some
separate, invisible infrastructure concern.

Architecture for Flexibility, Automation, Decentralization, and Delegation | 13

https://oreil.ly/Ow0AC


Although Gloo Gateway uses the Kubernetes Gateway API for its
configuration, it is not tied to Kubernetes; it can run natively on
VMs as well. Gloo Gateway can route to any network endpoint,
including natively to AWS Lambda endpoints.

Delegated API Configuration
Gloo Gateway is the only API gateway implementation that provides
a delegated API configuration layered on top of the Kubernetes
Gateway API. This means some API objects are responsible for con‐
figuring certain parts of the API gateway functionality, while others
can be delegated to API developer teams, so they can manage the
specific configurations that are important to them. This provides the
foundation for a self-service model and allows teams to configure
their gateways without stepping on other teams’ toes or requiring
a central team to do it. The delegation API also allows centralized
platform teams to configure the pieces they are concerned with,
such as security, gateway health, and integration.

Federation/Tenancy Model
A big part of supporting self-service in an internal developer plat‐
form is tenancy, ideally with some sort of cell boundary with capa‐
bilities to deploy separate microgateways per domain. For Gloo
Gateway, this means deploying API gateways per namespace across
multiple Kubernetes clusters and configuring the gateways for fail‐
over.

For stronger tenancy guarantees, aligning to the cluster model or
deploying multiple control planes to configure dedicated microga‐
teways is an option. When you have multiple control planes for
the microgateways, you start to get to a federated API management
model with multiple independent gateways working together to pro‐
vide the API management fabric.

Legacy API management vendors don’t offer this kind of flexibil‐
ity. They usually offer a single, monolithic, centralized gateway;
if you want to use a microgateway, that implementation is just a
less-featured gateway that handles a subset of functionality.

14 | Chapter 2: Foundations Are Important

https://oreil.ly/hQPYp
https://oreil.ly/hQPYp
https://oreil.ly/Skyso


Providing API Management for an Internal
Developer Platform
Macquarie Bank, a large, regulated financial institution in Australia,
experienced an explosion in API traffic, leading to a desire to move
from on prem to public cloud. The bank was also dissatisfied with
its existing processes, which caused API developers to sit and wait
weeks to make changes. To address issues with these processes, Mac‐
quarie implemented a solution to provide multitenant, self-service
capabilities to its API developers.

As the company moved to microservices, it faced more complex
needs for resilience, policy enforcement, and modern security pro‐
tocols. It needed more fine-grained rate limiting, circuit breaking,
distributed tracing, and authentication/authorization (JSON Web
Token [JWT] handling, TLS) deployed closer to its applications and
with more self-service functionality for API calls.

Macquarie Bank built its developer platform using Argo CD and
similar tools, along with an infrastructure as code (IaC) philosophy
on top of Kubernetes as depicted in Figure 2-3. The company ended
up using Gloo Gateway to create microgateways for each team to
achieve the necessary granularity of tenancy. All of this was abstrac‐
ted away with a simple self-service UI, monitoring dashboards,
GitOps, and Helm templates.

Macquarie Bank was able to give API developers the self-service
tools necessary to onboard new APIs or deploy changes within
hours, compared to the multiple weeks it took with the previous
processes and API management tools.

Providing API Management for an Internal Developer Platform | 15



Figure 2-3. Macquarie Bank architecture for a modern API manage‐
ment system based on Gloo Gateway–based microgateways.

Let’s take a closer look at the deployment architecture of API gate‐
ways to understand why a cloud native API gateway is a better fit.

Microgateway Architecture for Tenancy
Macquarie Bank adopted a microgateway architecture, which
deployed a dedicated API gateway per “domain,” as shown in
Figure 2-4. A domain can represent a single service, a group of
related services, or a set of services owned by a single team.

This was quite a bit different than the bank’s existing legacy API
management solution and architecture. By deploying multiple,
smaller microgateways, teams were better able to control their con‐
figurations and eliminate issues such as “noisy neighbor” problems.
Noisy neighbor becomes a problem when, for example, API A
configures a gateway to behave a certain way that can impact the
runtime behavior of API B. This also reduces the blast radius of
misconfigurations: if API A takes down its microgateway, API B can
still operate under its own microgateway.

16 | Chapter 2: Foundations Are Important



Figure 2-4. A microgateway pattern fronts various backends or
domains of services.

But most legacy API management vendors offer a slimmed down
“microgateway option”—so why didn’t that work for the Macquarie
use case? In the case of the legacy vendors, the microgateway option
is usually implemented differently from their core gateway and
implements only a small subset of the overall API gateway. For
example, Macquarie Bank needed the ability to do complex rate
limiting, circuit breaking, and distributed tracing for its services
deployed on Kubernetes in a decentralized and highly tenant way.
The legacy microgateways do not offer these capabilities.

Bringing API Management to Traffic in
All Directions
Decentralizing the API gateways and bringing them closer to the
applications helps solve a lot of the ownership and tenancy prob‐
lems discussed earlier. It allows platform teams to build self-service
automation on top of the gateways. It also brings the API security
and policy control close to the specific API endpoints. This helps to
avoid single points of failure and gives more fidelity to load balanc‐
ing and routing in highly dynamic environments like Kubernetes,
without needing to involve additional infrastructure teams (external
load balancers, etc.).

Bringing API Management to Traffic in All Directions | 17

https://oreil.ly/NEklN
https://oreil.ly/NEklN


As we saw in the Macquarie Bank use case, we can use a modern
API gateway combined with an internal developer platform to auto‐
mate away a lot of the configuration needed to provide self-service.
This model is a step in the right direction and solves a lot of the
original challenges we discussed regarding legacy API management
solutions. But this approach still treats API traffic as an “ingress
problem.” What about API calls in the so-called east-west direction?
Or egress?

For these internal API calls, do you need to pass API keys? Do you
need to establish TLS/mTLS? How do you end up enforcing service-
to-service policy? How do service calls get appropriately routed to
where their data is? For egress use cases, like AI/LLM, how can you
ensure calls to these APIs are appropriately routed through an egress
API gateway? How can you get monitoring, security, or other LLM-
specific functionality like prompt management, augmentation, or
failover? How can we extend this microgateway model of federated
API management to be an omni-directional solution?

In the next chapter, we see how a service mesh can be combined
with this microgateway pattern to solve the API-to-API connectivity
problems, not only for the ingress direction, but for the east-west
and egress directions as well.

18 | Chapter 2: Foundations Are Important



CHAPTER 3

Omni-Directional API
Management

In Chapter 2, we introduced a modern API gateway as a foundation
that, when combined with platform engineering, puts you on the
right track for a powerful self-service API management solution.
Up until now, this approach, and just about every other API man‐
agement solution, considered traffic from an “ingress” perspective—
that is, traffic coming into a boundary (domain, cluster, data center,
etc.). What about traffic between APIs within a boundary? What
about traffic from APIs to services outside the boundary?

Modern API management should be omni-directional, not just
ingress. In fact, most API usage within an enterprise is likely “inter‐
nal” API calls, that is, APIs calling other APIs. Treating this traffic
as ingress traffic could work, but there are a lot more moving pieces
and ways to slip up. For example, to call an API you first need to
identify the calling API in some way (API key, JWT token, etc.). To
do this, you need to either exchange credentials (user name, pass‐
word) at runtime or store long-lived tokens that can be retrieved
at runtime. Managing all of these security tokens or credentials for
potentially thousands of APIs and services can be problematic and
risky.

We can simplify a lot of the challenges of API-to-API service traffic
with a service mesh. A service mesh can also help with the challenges
of egress traffic. But how does that fit with the foundation we dis‐
cussed in the previous chapter? The legacy vendors have always

19



told us that an API gateway and a service mesh are two different
tools for solving two different problems. This chapter will turn that
premise on its head. We will get into some of the details of how
these technologies come together and go deeper into the technology
than the previous chapters. Buckle up!

Using a Service Mesh for East-West API Traffic
A service mesh solves service-to-service traffic challenges such as
security, observability, and reliability. A service mesh uses proxies to
intercept traffic and transparently control it, adding authentication,
authorization, tracing, auditing, load balancing, traffic routing for
blue/green deployments, and much more. Istio is a popular and
widely deployed open source service mesh. Istio’s initial service
mesh offering deployed a proxy with each instance of an application
to inject its traffic handling capabilities. This proxy, running along‐
side the application, is referred to as a sidecar. For example, with an
Envoy sidecar proxy deployed with an application instance, as seen
in Figure 3-1, Istio can transparently encrypt the traffic from source
to destination with mTLS (mutual TLS) without the application
knowing about it. This enables authentication of service calls on the
wire without additional API tokens or JWTs. Istio handles all of the
automation and operations for minting workload certificates used in
the mTLS connections, including rotating the certificates. As we saw
in Chapter 2, Envoy is a very powerful proxy, but is not a full API
gateway.

Figure 3-1. Most service mesh implementations follow a sidecar
approach, which deploys a powerful L7 proxy to handle mTLS, rout‐
ing, and observability.

Although a sidecar-based service mesh can deliver a lot of value
to manage service connectivity and APIs, it’s not a panacea. Inject‐
ing a sidecar into all instances of a service turns out to be an
invasive operation. In Kubernetes, it forces the application pods to
restart, changes assumptions about pod resources, can cause race
conditions, and fundamentally couples the infrastructure to the

20 | Chapter 3: Omni-Directional API Management



application, making it more difficult to patch and upgrade. In addi‐
tion, a sidecar implements all of the mesh capabilities, so when you
introduce it, it’s difficult to introduce just certain features. Lastly, at
scale, the resources the sidecars reserve can be fairly costly.

Istio Ambient Mode
Back in September 2022, Solo.io and Google built a sidecar-less
implementation of Istio called ambient mode. In this mode, the
required proxies are run outside of the application, as we’ll see in the
following sections. Additionally, Istio introduced a new, specialized
proxy that allowed features to be layered and composed, solving
the drawbacks of the sidecar and making incremental adoption
of Istio’s features possible. With Istio ambient mode, applications
don’t need to restart, and adoption of the mesh is truly transparent.
Since there are no sidecars, ambient mode is almost an order of
magnitude more resource efficient. It also lays the groundwork for a
more powerful API management using microgateways, which ties in
nicely with the concepts introduced in Chapter 2. This makes Istio
ambient mode, combined with a powerful API gateway like Gloo
Gateway, capable of powering an omni-directional, federated API
management solution.

How Is Istio Ambient Mode Implemented?
Istio ambient mode implements its functionality with two layers
(as shown in Figure 3-2), which can be adopted incrementally and
composed together. The first layer is known as the secure overlay
layer. It’s responsible for creating mTLS connections on behalf of
the services. This layer can be adopted independently of any other
mesh features and forms the foundational layer of a zero-trust archi‐
tecture, in which all connections and API requests are authenticated,
authorized, audited, and encrypted.

The second layer, which sits on top of the secure overlay layer,
is called the waypoint layer. It’s responsible for any Layer 7 (L7)
functionality (request load balancing, retries, traffic splitting, L7
telemetry, etc.) in the mesh. This layer is extremely flexible, as we’ll
see, and is where we can add powerful API management capabilities.

Using a Service Mesh for East-West API Traffic | 21

https://oreil.ly/ZiGlH
https://oreil.ly/ZiGlH
https://oreil.ly/hxKWc
https://oreil.ly/hxKWc


Figure 3-2. Istio ambient mode implements the mesh with two compos‐
able layers: a secure overlay layer to handle mTLS and a waypoint
layer to handle L7 functionality.

Secure Overlay Layer
The secure overlay layer is implemented with a highly optimized
Rust-based proxy called ztunnel. This node agent is responsible for
associating x509 certificates from Istio’s CA (certificate authority) to
the connections that are opened from the app. These certificates use
the SPIFFE (Secure Production Identity Framework for Everyone)
spec to encode workload identity. With workload identity, we can
specify authorization policies that are durable and not dependent on
ephemeral constructs like IP address or network locations.

The secure overlay layer establishes mTLS connections with the
remote application and does very basic Layer 4 (L4) telemetry
reporting and connection load balancing. The mTLS connection
actually originates in the application’s pod, but the ztunnel does not
run in the application’s pod (see Figure 3-3). This layer works with
any Container Network Interface (CNI) implementation including
popular ones like Cilium, Calico, and Amazon Virtual Private Cloud
(VPC). This layer is also interoperable with sidecar mode for migra‐
tion purposes.

22 | Chapter 3: Omni-Directional API Management



Figure 3-3. The secure overlay layer uses a custom-built data plane
called the ztunnel.

Waypoint Layer
The waypoint layer is implemented with Envoy proxy (see Fig‐
ure 3-4), which is the same proxy used for sidecars. You can enable
the waypoint layer for all the workloads in a specific namespace
or for specific services. The waypoint layer runs as a normal Kuber‐
netes (K8s) deployment in the cluster and can be enabled when
you need Layer 7 capabilities from the mesh. Layer 7 functionality
includes the following:

• HTTP 1.x, 2, or 3•
• Request routing•
• Advanced load balancing•
• Request mirroring•
• Fault injection•
• Request retries•
• gRPC-specific capabilities•
• Traffic splitting•
• L7 telemetry•

Using a Service Mesh for East-West API Traffic | 23



Figure 3-4. The ztunnel component can route to an L7 gateway in the
waypoint layer for L7 processing.

If L7 processing is not needed, the mesh can completely bypass the
waypoint layer. This saves significantly on performance and is an
optimization not available for sidecars. For example, when service A
wants to talk to service B, and they have been added to the mesh,
they will automatically get mTLS mutual authentication between
them. This is very fast L4 processing that happens through the ztun‐
nels. If we want to add L7 processing, let’s say checking a JWT token
or doing some routing based on a header, we can deploy a waypoint
for the namespace in which service B runs. Now, all traffic destined
for services in that namespace, including service B, will go through
the waypoint. You can think of the waypoint as a microgateway for
each Kubernetes namespace, as shown in Figure 3-5. A waypoint
can also be used as an egress gateway for services that run outside
the cluster (or potentially as a SaaS). We will look closer at egress
when we discuss AI/LLMs.

Figure 3-5. The waypoint layer follows a microgateway pattern, which
can be tuned for tenancy to the namespace (default), a specific service,
or even multiple namespaces.

24 | Chapter 3: Omni-Directional API Management



The waypoint layer is configured for routing in Istio with the Kuber‐
netes Gateway API. The classic Istio APIs (VirtualService) can also
be used, but the community recommends switching to the Gateway
API.

For more information on Istio ambient mode, please see Sidecar-less
Istio Explained (O’Reilly, forthcoming in November 2024).

Enabling Omni-Directional API Management
with Istio Ambient
Istio ambient mode brings a much more flexible solution to the table
for east-west and egress traffic. As seen previously, the decoupling
of the L7 functionality from the secure overlay layer means we can
incrementally adopt security and gateway features. The model used
for the waypoint layer, which is basically a namespace gateway, starts
to look like the microgateway deployment we saw in the Macquarie
Bank use case from Chapter 2. However, the proxy used in the
waypoint layer for Istio ambient mode is just a stock, vanilla Envoy
proxy.

Although this feature is not widely discussed, the Istio ambient
waypoint architecture is intended to be pluggable: the implementa‐
tion supports swapping the waypoint’s default proxy with another
proxy or gateway as a solution requires. At Solo.io, we replaced the
default proxy with Gloo Gateway. This brings a full API gateway
to the mesh in the east-west and egress directions. Now we get the
benefits of mutual authentication/mTLS, telemetry, routing control,
and resilience in all traffic directions with the benefits of an API
gateway, as discussed in Chapter 2.

Istio ambient mode combined with Gloo Gateway, as shown in
Figure 3-6, fits the requirements of a omni-directional, federated
API management solution by using a delegating model for its API
and being flexible, driven by automation, and fully decentralized. It
can be used for ingress, east-west, and egress.

Gloo Gateway is also configured with the Kubernetes Gateway API,
but just like in the ingress mode, it can be extended with more pow‐
erful features including JWT handling, rate limiting, request trans‐
formation, WAF, direct lambda invocation, GraphQL, and much
more.

Enabling Omni-Directional API Management with Istio Ambient | 25



Figure 3-6. The waypoint layer can be pluggable in Istio ambient
mode, which can accommodate a full API gateway such as Gloo
Gateway.

Benefits of an Omni-Directional, Federated API
Management
The most obvious benefit of omni-directional, federated API man‐
agement is that all traffic in the API management system is secure
by default because it is encrypted and authenticated with mTLS.
There’s no more trying to manage usernames, passwords, API keys,
complex OAuth flows, and so on for API-to-API calls. Additionally,
there are no single points of failure or centralized gateways that can
impact all traffic if they fail. All gateways are decentralized following
a microgateway pattern, and each gateway can be deployed in a
highly available fashion. You can implement simple rate limiting up
to complex quota usage at the route, API, client, or organization
level. In fact, you can implement rate limiting based on anything
you can see in the network call (connection, request, headers, body,
etc.).

Traditionally, API-to-API calls require hairpinning out to a central‐
ized gateway somewhere in a virtual private cloud or data center.
This takes careful preparation, such as setting up load balancers to
the API management system and to the workloads. This also takes
DNS settings to point to the load balancer virtual IPs. Then you
have to set up TLS certificates on the load balancer and, ideally, on
the backend services. Omni-directional API management simplifies
all of this.

In an enterprise, there will often be a need for more complex or
backward compatible interaction protocols that the API gateway
needs to handle. Checking API keys, verifying HMAC (hash-based

26 | Chapter 3: Omni-Directional API Management



method authentication code), caching authorization tokens, and so
on might need to still happen. By having a full API gateway (such
as Gloo Gateway in our example), we can handle these use cases
without any problems.

How Do New Use Cases Like AI/LLM Usage Fit into the
Equation?
As we’ve seen, Istio ambient mode can help with egress traffic. For
the LLM use cases presented in Chapter 1, we can automatically and
transparently route traffic through a waypoint gateway implemented
with Gloo Gateway. When doing so, we can apply specific security
policies, rate limiting, and LLM prompt management or failover.
These features can be introduced transparently to the applications
without any code changes.

For example, we can set up a waypoint proxy specifically for com‐
municating with OpenAI APIs, as illustrated in Figure 3-7. This
waypoint proxy can be implemented with Gloo Gateway, which
provides LLM policy-specific capabilities.

Figure 3-7. Istio ambient mode can help apply policy to egress traffic by
routing to an egress waypoint, which is helpful in SaaS and LLM use
cases.

Gloo Gateway can automatically inject the required API keys to
call openai.com. It can also specify system prompts that should be
included with the user prompt to promote consistency in results.
Gloo Gateway can filter requests and responses for sensitive data
(personally identifiable information [PII], credit card numbers, etc.)
to avoid sending disallowed data to the LLM. To avoid expensive

Enabling Omni-Directional API Management with Istio Ambient | 27



mistakes, misuse, or rogue clients in the enterprise, this egress Gloo
Gateway can also rate limit based on LLM tokens. Lastly, Gloo Gate‐
way can be used for more advanced LLM use cases like token-based
failover (used all tokens for the account) to another LLM, or things
like retrieval-augmented generation (RAG).

One thing to note about egress use cases, including the LLM use
cases, is that although traffic is encrypted with mTLS to the egress
gateway, it is not encrypted after that. It is up to the platform oper‐
ator to configure outbound connections with the proper security.
Additionally, the service mesh should be used in conjunction with
a Kubernetes NetworkPolicy to add defense in depth for egress use
cases.

Bringing It All Together
Combining a powerful API gateway like Gloo Gateway with an east-
west and egress traffic control like Istio ambient mode into a micro‐
gateway deployment gives us a very powerful omni-directional API
management solution. The last piece of the puzzle is how this all fits
together for your platform. Let’s dig into that in the next chapter.

28 | Chapter 3: Omni-Directional API Management



CHAPTER 4

Tying Omni-Directional API
Management into Your Platform

Modern API management for internal developer platforms balan‐
ces flexible developer tool choices with golden paths for runtime,
including deployment, operation dashboards, and adhering to gov‐
ernance. To achieve this ideal, you need to practice an “everything
as code” mentality and use APIs/interfaces to the internal developer
platform. Following an operational model where everything is code,
we can put controls and automation in place to achieve compliance
and governance. We can put infrastructure as code (IaC), config‐
uration as data, and policy as code into our GitOps workflows.
This provides version control, repeatability, consistency, and safety
when doing rollouts. It also lays the groundwork for self-service.
The platform team can expose a UI, CLI, and APIs to facilitate
developer interactions with the platform. API developers can choose
the method of interaction with which they feel most comfortable to
deploy changes to their APIs. This interaction is illustrated at a high
level in Figure 4-1.

29



Figure 4-1. The internal developer platform enables API developers to
deploy their changes following a self-service model, while abstracting
away the details of the backend infrastructure. The workflow follows a
GitOps-based model.

The platform automation handles the deployment, rollout, and
orchestration to the backend infrastructure. Organizations can
choose to use containers, functions, and/or VMs based on what’s
best for their use case. For example, an AWS Lambda deployment
might be the right choice for APIs that are rarely used or intended
to facilitate integrations between AWS services. Or if they have
a good understanding of the API usage but still need horizontal
scaling, organizations may choose to use Kubernetes. Lastly, some
APIs may need to be deployed to VMs because they’ve not yet been
(or cannot be) migrated to a container environment. The platform
team working with the developer team can decide which is best for
which use case, keeping in mind use cases may evolve, with the API
moving from one infrastructure to another. This should not affect
the developers’ workflow.

When it comes to deployment and runtime, the platform should be
tool agnostic. APIs need tools for designing, testing, mocking, lint‐
ing, and others tasks. Developers can be picky about their tools; they
may choose certain tools based on their own background or on the
language used to build the API. This is not to say the platform needs
to support custom integrations with an unbounded selection of
tools, but rather to say the interface between the developers and the
platform should be a standard interface based on declarative config‐
uration and GitOps. Whatever tools developers use, they should be

30 | Chapter 4: Tying Omni-Directional API Management into Your Platform



able to produce the deployment documents (YAML, JSON, Open‐
API Specification, etc.) that fit with the platform and CI/CD, as
illustrated in Figure 4-2.

Figure 4-2. Common tooling used by developers should be pluggable
into the internal developer platform through standard interfaces, such
as declarative configuration.

Building Golden Paths
The primary goals of an internal developer platform are to improve
developer experience, shorten the time for developers to deliver
business value, and improve compliance. Building out golden paths
—or push-button deployments that adhere to security, observabil‐
ity testing, documentation, reliability, and general operational best
practices—is key to achieving these goals. Let’s look at a few of the
capabilities that an internal developer platform should have.

Platform User Interface and Dashboards
The platform should have a user interface that developers can use
to start new API projects, manage deployments, and dig into opera‐
tional metrics. Some organizations may choose to build their own
tailored UI, while others might use existing portal technologies like
Backstage. While a GUI is important, some power users may prefer
to use a CLI or API directly, so options to do so should be incorpo‐
rated into the platform as well.

Control Plane API and Templates
Users should be shielded from the underlying details of the plat‐
form. Developers should not have to know about the details of
Istio or a CNI to do a deployment. Those details should be hidden

Building Golden Paths | 31

https://oreil.ly/--qO5


in the automation the platform team builds. However, some devel‐
opers will want more direct access to the underlying API objects
for customization or because they are more comfortable working
that way. To facilitate this, platform teams can either build an API
for their platform control plane or directly expose templates that
developers can use to customize the platform. For example, using
Helm to package well-known templates with some extension points
is a popular choice.

Platform in Layers
Omni-directional API management fits within the rest of the plat‐
form automation as a layer of the delivery pipeline. API lifecycle is
not some separate, siloed feature of a monolithic API management
system; rather, it’s fully integrated into the automation you’ve built
for the rest of your software delivery system, as shown in Figure 4-3.

Figure 4-3. Layering tools to support an internal developer platform.

This layer must consist of tooling that handles API traffic for
ingress, east-west, and egress. Trying to have separate tools for each
direction creates confusion, operational challenges, overlap, gaps,
and costly integrations. The federated API management solution

32 | Chapter 4: Tying Omni-Directional API Management into Your Platform



built on Gloo Gateway from Chapter 3 solves this problem and fits
nicely in a modern internal developer platform.

Adopting Omni-Directional API Management
in Your Platform
So far we’ve seen a number of theories, technologies, architectures,
and discussion around an ideal state. Most organizations on their
modernization journey are trying to bring along their outdated
solutions or evaluating what might work best for them if they adopt
something newer. There are generally some prerequisites to getting
started on this journey and then a three-phase adoption plan.

Prerequisites
Understanding the needs of API developers and laying the founda‐
tion for an internal developer platform is a strong prerequisite for
modernizing your API management to support omni-directional
traffic. This chapter introduced some context and principles for
putting together an internal developer platform, but the details are
beyond the scope of this report. See Gregor Hohpe’s book Platform
Strategy (independently published). The most important aspects of
the platform will be how you choose to automate and orchestrate it,
as that is where a modern API management system would fit in (as
depicted in Figure 4-3).

Phase One
The first step to modernizing your API management and integrating
it with your developer platform is to find an API gateway that fits
nicely into your platform. Focus on one that is flexible enough
to support your IaC principles and GitOps workflows. You’ll also
need to consider whether it supports various runtimes, container
environments, and the ability to delegate configuration decisions
directly to the developer teams as needed. You should strive for a
standard routing API such as the Kubernetes Gateway API. Lastly,
you’ll want to decide the best way for developers to interact with
this system. Will they be touching configuration objects themselves
and colocating these with their service? Or will they have templates
or golden path configurations they can adopt? Or will it be driven
primarily by a UI? Working with developers to deliver this function‐
ality is the best approach.

Adopting Omni-Directional API Management in Your Platform | 33



Phase Two
In the next phase, you’ll need to decide how best to secure traffic
for your APIs. For the ingress direction, you may decide to use
common mechanisms supported by the API gateway (API keys,
JWT, OIDC, etc.). For internal API usage, you should probably look
at automating away things such as workload identity and combining
that with end user identity. Writing policies using these composite
identities for API calls can be done with a service mesh in the
east-west direction, as discussed in Chapter 3. Ideally, the developers
should not know the details of the system running under the covers,
but be able to drive it with templates and golden path configurations
set up by the platform team.

Phase Three
In the last phase, you’ll want to combine the API gateway and the
service mesh to get consistent routing, traffic, security, and observa‐
bility policies regardless of which direction the traffic is intended:
ingress, east-west, or egress. Standardizing these policies will signifi‐
cantly simplify the toil that teams face when trying to deliver APIs.
Unifying this, and driving it through automation, will reduce the
errors and inconsistencies seen in organizations, which are recipes
for misconfigurations.

Improving Self-Service, Resilience, and
Innovation
An omni-direction API management solution, based on a modern
API gateway like Gloo Gateway and Istio, provides an extremely
powerful solution that integrates nicely within an internal developer
platform. This solution provides end-to-end security, zero trust,
tenancy, and resilience, and enables self-service access to make API
delivery changes. This architecture has been proven to improve
business performance as demonstrated by the Macquarie Bank use
case discussed in Chapter 2. More innovation is happening in this
space, including the ability to use any cloud gateway as a microga‐
teway within a federated solution with a single pane of glass for
management. Legacy monolithic API management solutions are
outdated and should be avoided for modern projects. New, cloud
native approaches have emerged and should be considered.

34 | Chapter 4: Tying Omni-Directional API Management into Your Platform



About the Author
Christian Posta (@christianposta) is VP, Global Field CTO at
Solo.io. He is the author of Istio in Action as well as many other
books on cloud native architecture and is well known in the cloud
native community for being a speaker, blogger, and contributor to
various open source projects in the service mesh and cloud native
ecosystem (Istio, Kubernetes, etc.). Christian has spent time at gov‐
ernment organizations, commercial enterprises, and web-scale com‐
panies, and now helps organizations create and deploy large-scale,
cloud native, resilient, distributed architectures.

https://blog.christianposta.com

	Cover
	Solo.io
	Copyright
	Table of Contents
	Chapter 1. The Need for Modern API Management
	Improving Challenges Around API Delivery
	Emerging Use Cases Around AI and LLM Usage
	Existing API Management Is Outdated
	Modern API Management
	Platform Engineering to the Rescue

	Chapter 2. Foundations Are Important
	Foundation of a Modern Gateway
	Architecture for Flexibility, Automation, Decentralization, and Delegation
	Separation of Control Plane from Data Plane
	Declarative Configuration
	Delegated API Configuration
	Federation/Tenancy Model

	Providing API Management for an Internal Developer Platform
	Microgateway Architecture for Tenancy
	Bringing API Management to Traffic in All Directions

	Chapter 3. Omni-Directional API Management
	Using a Service Mesh for East-West API Traffic
	Istio Ambient Mode
	How Is Istio Ambient Mode Implemented?
	Secure Overlay Layer
	Waypoint Layer

	Enabling Omni-Directional API Management with Istio Ambient
	Benefits of an Omni-Directional, Federated API Management
	How Do New Use Cases Like AI/LLM Usage Fit into the Equation?

	Bringing It All Together

	Chapter 4. Tying Omni-Directional API Management into Your Platform
	Building Golden Paths
	Platform User Interface and Dashboards
	Control Plane API and Templates
	Platform in Layers

	Adopting Omni-Directional API Management in Your Platform
	Prerequisites
	Phase One
	Phase Two
	Phase Three

	Improving Self-Service, Resilience, and Innovation

	About the Author



