
A Modern Approach
to Service Mesh.
Migrating from
Sidecars to Sidecarless
Ambient Mesh

White paper

Author: Peter Jausovec, Principal Technical Marketing Engineer @ Solo.io

2

Introduction
The service mesh landscape is undergoing a significant
transformation with the introduction of sidecarless, or ambient
mode. This shift represents a fundamental change in how service
meshes are implemented and managed, moving from the traditional
sidecar model to a more flexible and resource-efficient approach.

Traditionally, Istio has relied on a sidecar architecture, where each
application pod is paired with a proxy container. While effective, this
model can lead to increased resource consumption and operational
complexity as the number of services grows. The ambient
architecture introduces a new paradigm that separates Layer 4 (L4)
and Layer 7 (L7) processing.

The L4 processing is handled by a node-level component called
ztunnel. The L7 processing is managed by optional waypoint
proxies, which can be deployed at various levels of granularity
(namespace, service, or multi-namespace).

This architectural shift allows for more efficient resource utilization
and flexibility in service mesh deployment and management.

3

Why migrate to ambient mesh?

Key Takeaway

Migrating to ambient mesh offers several significant benefits:

However, it’s important to note that migration also presents challenges, including:

Sidecar and ambient modes can work together,
allowing for a gradual migration strategy.

Reduced Resource Overhead:
Especially beneficial in large-scale deployments.

•	 The complexity of migrating large, existing sidecar-based deployments

•	 Potential changes required in security and traffic management policies

•	 The learning curve associated with new concepts and deployment models

Improved Scalability and Performance:
More efficient handling of service communication.

Greater Flexibility:
In mesh configuration and policy enforcement.

Simplified Operations:
Easier maintenance and management of the service mesh.

4

Understanding ambient mesh architecture

Ambient mesh introduces two key components:

ztunnel:
A node-level component handling Layer 4 (L4) processing.

Waypoint Proxies:
Optional components managing Layer 7 (L7) processing, deployable at various
levels of granularity (namespace, service, or multi-namespace).

1.

2.

5

Migration strategy and considerations

Ztunnels are designed to be fast, secure, and lightweight. They are deployed per node
on a cluster and enable the basic service mesh configurations for L4 networking
features such as mutual TLS (mTLS), telemetry, authentication, and L4 authorization.

Waypoint proxies provide L7 networking features such as any routing done in Istio’s
VirtualService, L7 telemetry, and L7 authorization policies.

Due to the different architecture of ambient mode, there are a couple of prerequisites
you must consider before deciding to migrate to ambient mode.

Ambient mesh depends on a CNI plugin called istio-cni. If you’re using Istio without the
istio-cni installed, you’ll have to install it for ambient mesh.

With the split between L4 and L7 processing in ambient mesh, it’s important to
understand and inventory all resources and workloads where L7 processing is used.
This will help you determine if you need waypoint proxies.

Migrate to Kubernetes Gateway API (optional)
The waypoint proxies in the ambient mesh use the Kubernetes Gateway API
resources. You should migrate to the Kubernetes Gateway API and switch from
the VirtualService resources to the HTTPRoute/TCPRoute resources. Additionally,
if you’re using authorization policies, make sure you’re using the targetRefs
selector in your resources as that makes the migration to ambient much easier.

Migrate sidecar workloads to ambient
The last step in the migration process is removing the sidecar injection label from
the namespaces and workloads in the mesh and replacing it with the ambient
mode label, then doing a rollout restart to remove the injected sidecars.

1.

2.

6

Security

Traffic Control

If you’re only using network-based authorization and identity-based policies, you’re
only doing L4 processing and you don’t need a waypoint proxy. However, if you’re
using a full authorization policy, for example, anything in the to or when field in the
AuthorizationPolicy or JWT authentication or OAuth and OIDC flows you will require a
waypoint proxy.

Traffic control features include load balancing, traffic shifting, and traffic mirroring. Any
workload in your mesh that uses a VirtualService will require you to deploy a waypoint
proxy to handle it in the ambient mesh.

Observability

Resilience

The observability features include logging, tracing, and metrics. The ztunnel in
upstream Istio only offers basic network logs and TCP metrics (bytes sent/received)
and it doesn’t support tracing.

You will need a waypoint proxy if you require L7 RED metrics (rate of requests, rate of
errors, request duration), tracing, or full request metadata logging.

Note that with Gloo Mesh core, you get logging, tracing, and metrics without a
waypoint proxy.

The features falling under the resilience category are circuit breaking and outlier
detection (defined in DestinationRule), rate limiting (EnvoyFilter and external service),
timeouts, retries, and fault injection (defined in VirtualService). For these features to
work you’ll have to deploy a waypoint proxy.

https://docs.solo.io/gloo-mesh-core/latest/

7

Determining waypoint deployment granularity

Once you determine you require waypoint proxies, you’ll have to decide the level
of granularity for the waypoint. This can be either namespace, service, or multi-
namespace. The decision on the granularity of the waypoint depends on the following:

Resource Utilization and Performance
High-traffic services or services with resource intensive Istio policies may benefit
from dedicated waypoint proxies. This prevents resource contention, allows for
fine-tuned resource allocation, and can help optimize performance for latency-
sensitive services

Security and Policy Management
Services that require finer-grained policy enforcement might need separate
waypoint proxies. In this case, you can deploy a dedicated waypoint proxy for
a service or a group of services that require stricter isolation or have specific
security policies. Conversely, if you have groups of services that share similar
policies, it might be more efficient to group them under a shared waypoint proxy.

Organizational Structure and Operational Complexity
Team structure and service management practices can influence waypoint
deployment. If different teams manage different namespaces or services, it might
make sense to deploy waypoint proxies at the namespace level to give teams
more autonomy.

Resource Efficiency and Gradual Migration
Start with a coarse-grained approach (e.g. one waypoint proxy per namespace)
and refine based on needs and insights.

1.

2.

3.

4.

8

Challenges and mitigation strategies

Complexity in migrating large, existing deployments

Changes in security and traffic management policies

Learning curve for new concepts

Mitigation:
Implement a phased migration approach, starting with non-critical services. Consider a
hybrid model where sidecar and ambient workloads work together.

Mitigation:
Conduct an audit of existing policies and plan for necessary adjustments, migrate to
Kubernetes Gateway API.

Mitigation:
Solo.io’s expert support in ambient mesh empowers users to secure, control, and
manage workloads with maximum efficiency. Our dedicated Istio specialists provide
tailored guidance, helping you navigate new Ambient mesh concepts and overcome
challenges with best-practice strategies.

Challenge 1

Challenge 2

Challenge 3

9

Migration example

In this migration example, we’ll use the Bookinfo sample application and deploy the
services between two namespaces.

We’ll use a Kind cluster for this test and install the latest version of Istio using Helm.

You can get all the files from this GitHub repository.

https://istio.io/latest/docs/examples/bookinfo/
https://github.com/peterj/ambient-migration-example/tree/main

10

We’ll start by installing Istio and deploying the Bookinfo application in the sidecar mode,
so we can showcase how the migration to ambient mesh might look like.

Install Istio

Enable access logging:

1.

2.

helm repo add istio https://istio-release.storage.googleapis.com/charts
helm repo update

kubectl create ns istio-system

helm install istio-base istio/base -n istio-system --set
defaultRevision=default --wait
helm install istio-cni istio/cni -n istio-system --wait
helm install istiod istio/istiod -n istio-system --wait

kubectl apply -f - <<EOF
apiVersion: telemetry.istio.io/v1
kind: Telemetry
metadata:
 name: mesh-default
 namespace: istio-system
spec:
 accessLogging:
 - providers:
 - name: envoy
EOF

11

Install Kubernetes Gateway API:

Install ingress gateway:

3.

4.

kubectl get crd gateways.gateway.networking.k8s.io &> /dev/null || \
 { kubectl apply -f https://github.com/kubernetes-sigs/gateway-api/
releases/download/v1.1.0/standard-install.yaml }

kubectl create ns istio-ingress

kubectl apply -f - <<EOF
apiVersion: gateway.networking.k8s.io/v1
kind: Gateway
metadata:
 name: gateway
 namespace: istio-ingress
spec:
 gatewayClassName: istio
 listeners:
 - name: http
 hostname: “bookinfo.example.com”
 port: 80
 protocol: HTTP
 allowedRoutes:
 namespaces:
 from: Selector
 selector:
 matchLabels:
 kubernetes.io/metadata.name: frontend
EOF

You can check the pod and LB service was created in istio-ingress by running
kubectl get svc,po -n istio-ingress.

12

Install bookinfo

Create a routing rule to route traffic from the ingress gateway to the
productpage service:

4.

5.

kubectl create ns frontend
kubectl label namespace frontend istio-injection=enabled
kubectl apply -f bookinfo/frontend.yaml -n frontend

kubectl create ns backend
kubectl label namespace backend istio-injection=enabled
kubectl apply -f bookinfo/backend.yaml -n backend

kubectl apply -f - <<EOF
apiVersion: gateway.networking.k8s.io/v1
kind: HTTPRoute
metadata:
 name: productpage
 namespace: frontend
spec:
 parentRefs:
 - name: gateway
 namespace: istio-ingress
 hostnames: [“bookinfo.example.com”]
 rules:
 - matches:
 - path:
 type: Exact
 value: /productpage
 - path:
 type: PathPrefix
 value: /static
 - path:
 type: Exact
 value: /login

13

Make sure you can access the product page via http://bookinfo.example.
com/productpage (or LB IP + Host header).

 The response should be an HTTP 200 OK

6.

curl -s -o /dev/null -w “%{http_code}\n” -H “Host: bookinfo.example.com”
172.18.255.200/productpage

200

 - path:
 type: Exact
 value: /logout
 - path:
 type: PathPrefix
 value: /api/v1/products
 backendRefs:
 - name: productpage
 port: 9080
EOF

14

Authorization policies

We’ll deploy a couple of authorization policies. First, an authorization policy that’s
enforced on the product page service and only allows requests to be sent from the
ingress gateway:

Sending the same request as before (through the ingress gateway) should still work,
however, if we deploy a sleep pod in the frontend namespace and try to access the
product page, it should fail:

kubectl apply -f - <<EOF
apiVersion: security.istio.io/v1
kind: AuthorizationPolicy
metadata:
 name: productpage-viewer
 namespace: frontend
spec:
 selector:
 matchLabels:
 app: productpage
 action: ALLOW
 rules:
 - from:
 - source:
 principals:
 - cluster.local/ns/istio-ingress/sa/gateway-istio
EOF

kubectl run -n frontend sleep --image=curlimages/curl --command -- /bin/
sleep infinity
kubectl exec -n frontend -it sleep -- curl -s -o /dev/null -w “%{http_
code}\n” -H “Host: bookinfo.example.com” productpage:9080/productpage

15

The second authorization policy will be applied on the ratings service. We’ll only allow
GET and POST requests to be sent from the reviews-v3 service:

The response should be an “HTTP 403 Forbidden”.

kubectl apply -f - <<EOF
apiVersion: security.istio.io/v1
kind: AuthorizationPolicy
metadata:
 name: ratings-policy
 namespace: backend
spec:
 selector:
 matchLabels:
 app: ratings
 action: ALLOW
 rules:
 - from:
 - source:
 principals:
 - cluster.local/ns/backend/sa/bookinfo-reviews
 to:
 - operation:
 methods: [“GET”, “POST”]
EOF

403

16

We can test this by deploying a sleep pod in the backend namespace and trying to
access the ratings service:

Confirm that the response is a “403 - Forbidden”

This second policy shouldn’t affect the product page, as it’s only applied to the
ratings service.

The last authorization policy we’ll deploy is for the details service and it will only allow
GET requests from the product page service:

kubectl run -n backend sleep --image=curlimages/curl --command -- /bin/
sleep infinity
kubectl exec -n backend -it sleep -- curl -s -o /dev/null -w “%{http_
code}\n” ratings.backend:9080/ratings/1

kubectl apply -f - <<EOF
apiVersion: security.istio.io/v1
kind: AuthorizationPolicy
metadata:
 name: details-policy
 namespace: backend
spec:
 selector:
 matchLabels:
 app: details
 action: ALLOW
 rules:
 - from:
 - source:
 principals:

403

17

We can test this policy is applied by sending a request from a non-product page
service:

kubectl exec -n backend -it sleep -- curl -s -o /dev/null -w “%{http_
code}\n” details.backend:9080/details/1

403

 - cluster.local/ns/frontend/sa/bookinfo-productpage
 to:
 - operation:
 methods: [“GET”]
EOF

18

Traffic policies

Let’s also configure a traffic routing policy that will route all traffic to the
reviews-v3 service:

kubectl apply -f - <<EOF
apiVersion: gateway.networking.k8s.io/v1
kind: HTTPRoute
metadata:
 name: reviews
 namespace: backend
spec:
 parentRefs:
 - group: “”
 kind: Service
 name: reviews
 port: 9080
 rules:
 - backendRefs:
 - name: reviews-v3
 port: 9080
EOF

Make sure you can access the product page via http://bookinfo.example.com/
productpage (or LB IP + Host header) and notice the reviews are only served by the
reviews-v3 service:

export GATEWAY_IP=$(kubectl get svc -n istio-ingress gateway-istio -o
jsonpath=’{.status.loadBalancer.ingress[0].ip}’)
curl -s -H “Host: bookinfo.example.com” $GATEWAY_IP/productpage | grep
“reviews-”

19

Let’s also scale up all deployments to 2 replicas:

kubectl scale deploy -n frontend --replicas=2 --all
kubectl scale deploy -n backend --replicas=2 --all

reviews-v3-6f5b775685-sxv4d
reviews-v3-6f5b775685-sxv4d

20

Installing Istio ambient mode

The first step is to upgrade Istio charts with ambient mode enabled and install ztunnel:

Make sure everything is installed:

helm install istio-cni istio/cni -n istio-system --set profile=ambient
--wait

Upgrade (reinstall istiod) with ambient profile
helm upgrade istiod istio/istiod --namespace istio-system --set
profile=ambient --wait

Install ztunnel
helm install ztunnel istio/ztunnel -n istio-system --wait

helm ls -n istio-system

NAME NAMESPACE REVISION UPDATED
STATUS CHART APP VERSION
istio-base istio-system 1 2024-10-03
16:10:25.118083 -0700 PDT deployed base-1.23.2 1.23.2
istio-cni istio-system 2 2024-10-03 15:47:31.63797
-0700 PDT deployed cni-1.23.2 1.23.2
istiod istio-system 2 2024-10-03
16:12:31.274487 -0700 PDT deployed istiod-1.23.2 1.23.2
ztunnel istio-system 1 2024-10-03
16:14:06.883523 -0700 PDT deployed ztunnel-1.23.2 1.23.2

21

Migration process

Let’s remove the sidecar injection label from the frontend and backend namespace -
this is to ensure that any new pods that are created or restarted won’t have the sidecar
proxy injected:

And we need to label the namespaces to tell Istio we want to add the pods to the
ambient mode, once we restart them:

kubectl label namespace frontend istio-injection-
kubectl label namespace backend istio-injection-

kubectl label namespace frontend istio.io/dataplane-mode=ambient
kubectl label namespace backend istio.io/dataplane-mode=ambient

In the sidecar mode, any routing or authorization policies are applied at the client
side, so we need to determine whether we need waypoint proxies that will enforce the
policies once we remove the sidecar proxies.

productpage-viewer authorization policy: this policy is applied on the product
page service and only allows requests to be sent from the ingress gateway. In this
case, because we’re not using any L7 concepts, even if we remove the sidecar
proxy from the productpage, the ztunnel will automatically enforce the policy.

details-policy authorization policy: this policy is applied to the details service
and allows only product page service to send GET requests. Because we’re using
an L7 concept (the GET method), ztunnel won’t be able to enforce this policy (it will
automatically deny it), so we’ll need a waypoint proxy to handle this as well.

1.

2.

22

ratings-policy authorization policy: applied to the ratings service and only
allows requests from the reviews service with GET or POST methods. Since we’re
using HTTP method, we’ll need a waypoint proxy to enforce this policy.

productpage HTTP route: this HTTP route configures the ingress gateway to route
the traffic to the specific paths on the productpage. Since the routing rules are
applied and enforced on the ingress gateway, we don’t need to deploy a waypoint
proxy for this.

reviews HTTP route: the route on the reviews service that routes all traffic to the
reviews-v3 service. In this case, productpage is the client, so if we remove the
sidecar proxy the client will not be able to enforce the route. We need to deploy a
waypoint proxy for the reviews service to handle the traffic routing.

3.

4.

5.

We’ll need a waypoint proxy, so let’s deploy one in the backend namespace and enroll
the backend namespace (this means that all pods in the backend namespace will
use this instance of the waypoint if needed). Later, you can decide to deploy more
waypoint proxies in the backend namespace if needed.

istioctl waypoint apply -n backend --enroll-namespace --wait

waypoint backend/waypoint applied
namespace backend labeled with “istio.io/use-waypoint: waypoint”

23

You can check the waypoint is ready by running:

Now that we have the waypoint deployed, we can take the existing L7 policies and
create an ambient version of them that uses the targetRef field. In ambient, the
targetRef field is the one supported by the waypoints and it tells the waypoint to
enforce the policy. We don’t want to directly modify the existing policies, because we
want to keep them enforced until we restart the workloads and remove the sidecar
proxies. If we’d update the existing policies, the sidecar proxies wouldn’t know how to
enforce them until we restarted the workloads.

The routing policies will be automatically enforced by the waypoint proxies, because
we’re already using the HTTPRoute resources. If you weren’t using that and you
were using VirtualServices, you’d have to create an HTTPRoute resource for each
VirtualService that you have before you remove the sidecar proxies.

Let’s deploy the waypoint version of existing policies:

kubectl get gtw -n backend

NAME CLASS ADDRESS PROGRAMMED AGE
waypoint istio-waypoint 10.96.54.173 True 25s

24

kubectl apply -f - <<EOF
apiVersion: security.istio.io/v1
kind: AuthorizationPolicy
metadata:
 name: details-policy-waypoint
 namespace: backend
spec:
 targetRefs:
 - kind: Service
 group: “”
 name: details
 action: ALLOW
 rules:
 - from:
 - source:
 principals:
 - cluster.local/ns/frontend/sa/bookinfo-productpage
 to:
 - operation:
 methods: [“GET”]

apiVersion: security.istio.io/v1
kind: AuthorizationPolicy
metadata:
 name: ratings-policy-waypoint
 namespace: backend
spec:
 targetRefs:
 - kind: Service
 group: “”
 name: ratings
 action: ALLOW
 rules:
 - from:
 - source:
 principals:
 - cluster.local/ns/backend/sa/bookinfo-reviews
 to:
 - operation:
 methods: [“GET”, “POST”]
EOF

25

We’re at the point now where we have the waypoint proxy deployed and the policies
are in place. The next step is to restart the pods in the frontend and backend
namespace to remove the sidecar proxies and enroll them in the ambient mode:

We can now run the istioctl zc workload and istioctl zc service command
to verify that all pods were moved to ambient and that the pods in the backend
namespace are using the waypoint proxy:

kubectl rollout restart deploy -n frontend
kubectl rollout restart deploy -n backend

kubectl delete po sleep -n frontend
kubectl delete po sleep -n backend

kubectl run -n frontend sleep --image=curlimages/curl --command -- /bin/
sleep infinity
kubectl run -n backend sleep --image=curlimages/curl --command -- /bin/
sleep infinity

istioctl zc workload

NAMESPACE POD NAME IP NODE

WAYPOINT PROTOCOL

backend details-v1-558d6b8747-fd6nx 10.244.0.44

kind-control-plane None HBONE

backend details-v1-558d6b8747-tjjwc 10.244.0.39

kind-control-plane None HBONE

backend ratings-v1-78d7884947-br5hw 10.244.0.38

26

kind-control-plane None HBONE

backend ratings-v1-78d7884947-mg2p6 10.244.0.46

kind-control-plane None HBONE

backend reviews-v1-cdd45ff95-h7nx9 10.244.0.45

kind-control-plane None HBONE

backend reviews-v1-cdd45ff95-lxhkb 10.244.0.40

kind-control-plane None HBONE

backend reviews-v2-78978699df-9454z 10.244.0.48

kind-control-plane None HBONE

backend reviews-v2-78978699df-lv99d 10.244.0.41

kind-control-plane None HBONE

backend reviews-v3-79ff749955-c597d 10.244.0.42

kind-control-plane None HBONE

backend reviews-v3-79ff749955-fm5lf 10.244.0.47

kind-control-plane None HBONE

backend sleep 10.244.0.16

kind-control-plane None TCP

backend waypoint-69bbfbdfcb-9qqfg 10.244.0.43

kind-control-plane None TCP
default kubernetes 172.18.0.2

None TCP

frontend productpage-v1-55586884d5-kz8tn 10.244.0.36

kind-control-plane None HBONE

frontend productpage-v1-55586884d5-mjntp 10.244.0.37

kind-control-plane None HBONE

frontend sleep 10.244.0.15

kind-control-plane None TCP

istioctl zc service

27

NAMESPACE SERVICE NAME SERVICE VIP WAYPOINT ENDPOINTS
backend details 10.96.152.221 waypoint 2/2
backend details-v1 10.96.175.236 waypoint 2/2
backend ratings 10.96.18.227 waypoint 2/2
backend ratings-v1 10.96.171.69 waypoint 2/2
backend reviews 10.96.152.102 waypoint 6/6
backend reviews-v1 10.96.94.80 waypoint 2/2
backend reviews-v2 10.96.15.16 waypoint 2/2
backend reviews-v3 10.96.119.175 waypoint 2/2
backend waypoint 10.96.54.173 None 1/1
default kubernetes 10.96.0.1 None 1/1
frontend productpage 10.96.239.190 None 2/2
istio-ingress gateway-istio 10.96.186.15 None 1/1
istio-system istiod 10.96.240.238 None 1/1
kube-system kube-dns 10.96.0.10 None 2/2
metallb-system metallb-webhook-service 10.96.5.191 None 1/1

CERTIFICATE NAME TYPE
STATUS VALID CERT SERIAL NUMBER NOT
AFTER NOT BEFORE
spiffe://cluster.local/ns/backend/sa/bookinfo-details Leaf
Available true 3a4ddbbaac79c9d8c62fc338ad608311
2024-10-10T23:23:29Z 2024-10-09T23:21:29Z
spiffe://cluster.local/ns/backend/sa/bookinfo-details Root
Available true 52e56cc8b52f41ff75649f759d702741
2034-10-07T22:48:53Z 2024-10-09T22:48:53Z
spiffe://cluster.local/ns/backend/sa/bookinfo-ratings Leaf
Available true dddf6a026d8349ea12bce024b6a1de08
2024-10-10T23:23:29Z 2024-10-09T23:21:29Z
spiffe://cluster.local/ns/backend/sa/bookinfo-ratings Root

Similarly, if you run istioctl zc cert, you’ll see that ztunnel issued a certificates for
all workloads in the ambient mesh:

28

Available true 52e56cc8b52f41ff75649f759d702741
2034-10-07T22:48:53Z 2024-10-09T22:48:53Z
spiffe://cluster.local/ns/backend/sa/bookinfo-reviews Leaf
Available true d65c6c34dbbf48ea9b6265b8ffd3f07c
2024-10-10T23:23:29Z 2024-10-09T23:21:29Z
spiffe://cluster.local/ns/backend/sa/bookinfo-reviews Root
Available true 52e56cc8b52f41ff75649f759d702741
2034-10-07T22:48:53Z 2024-10-09T22:48:53Z
spiffe://cluster.local/ns/frontend/sa/bookinfo-productpage Leaf
Available true 507dcf851d9c3624915e11c4a96aad32
2024-10-10T22:54:58Z 2024-10-09T22:52:58Z
spiffe://cluster.local/ns/frontend/sa/bookinfo-productpage Root
Available true 52e56cc8b52f41ff75649f759d702741
2034-10-07T22:48:53Z 2024-10-09T22:48:53Z
(base)

Testing

The last step is to validate all policies and routes are enforced correctly. We can start
by testing the productpage-viewer policy:

kubectl exec -n frontend -it sleep -- curl -s -o /dev/null -w “%{http_
code}\n” -H “Host: bookinfo.example.com” productpage:9080/productpage

000
command terminated with exit code 56

29

The policy was enforced correctly and the request was denied. We can also test the
details-policy policy:

kubectl exec -n frontend -it sleep -- curl -s -o /dev/null -w “%{http_
code}\n” -H “Host: bookinfo.example.com” details.backend:9080/details/1

403

From waypoint proxy:

[2024-10-14T20:15:48.344Z] “GET /details/1 HTTP/1.1” 403 - rbac_access_
denied_matched_policy[none] - “-” 0 19 0 - “-” “curl/8.10.1” “83c73503-
607e-4590-9de6-d8c243970763” “bookinfo.example.com” “-” inbound-
vip|9080|http|details.backend.svc.cluster.local - 10.96.104.243:9080
10.244.0.42:48646 - default

From ztunnel:
...
2024-10-14T20:14:49.578208Z error access connection
complete src.addr=10.244.0.42:55494 src.workload=”sleep” src.
namespace=”frontend” src.identity=”spiffe://cluster.local/ns/frontend/
sa/default” dst.addr=10.244.0.36:15008 dst.hbone_addr=10.244.0.36:9080
dst.service=”productpage.frontend.svc.cluster.local” dst.
workload=”productpage-v1-6c65c9f656-wl9c8” dst.namespace=”frontend” dst.
identity=”spiffe://cluster.local/ns/frontend/sa/bookinfo-productpage”
direction=”outbound” bytes_sent=0 bytes_recv=0 duration=”0ms” error=”http
status: 401 Unauthorized”
...

30

The request was denied as expected. We can also test the ratings-policy policy:

Once we verified all policies are enforced correctly, we can safely remove the
authorization policies that were enforced by the sidecar proxies:

kubectl exec -n backend -it sleep -- curl -s -o /dev/null -w “%{http_
code}\n” -H “Host: bookinfo.example.com” ratings.backend:9080/ratings/1

kubectl delete authorizationpolicy -n backend details-policy
kubectl delete authorizationpolicy -n backend ratings-policy

403

From waypoint:
[2024-10-14T20:16:26.191Z] “GET /ratings/1 HTTP/1.1” 403 - rbac_access_
denied_matched_policy[none] - “-” 0 19 0 - “-” “curl/8.10.1” “f974c98a-
ce24-4d36-8619-800df3890f04” “bookinfo.example.com” “-” inbound-
vip|9080|http|ratings.backend.svc.cluster.local - 10.96.165.224:9080
10.244.0.41:49922 - default

31

contact@solo.io

www.solo.io

Learn more

Get Started with Ambient
Mesh today
You can learn more about Ambient mesh at ambientmesh.io.

Want to start testing Ambient mesh? Learn how to implement it in
your environment with our free on-demand labs here.

mailto:contact%20us?subject=contact%40robustintelligence.com
https://ambientmesh.io/
https://ambientmesh.io/labs/

