
Establishing zero trust 
security for modern 
cloud architectures
How your organization can ensure 
safer cloud architecture by applying 
a zero trust network security model

eBook



2

Table of Contents

Breaking security with application modernization	 4

Get inside the perimeter for zero trust networks	 5

Applying zero trust for microservices 	 7

The rise of Envoy Proxy API gateways and Istio service mesh	 8

Connect, secure, and control 	 9

Conclusion	 12



3

Introduction

Modern application architectures have evolved from static monoliths to distributed 
microservices, typically running on containers and Kubernetes, and often across 
multiple zones such as on premises or in a public cloud. This trend is now combined 
with new methodologies like DevOps, CI/CD, and GitOps to increase the rate of 
software innovation. The ripple effects of these changes are being felt across every 
functional area of IT and challenging traditional operational models for provisioning, 
updates, monitoring, management, and security. 

Security becomes especially challenging in a fast-paced, distributed, dynamic 
application environment where the traditional organization boundaries are blurred. 
These changes in application architectures are also transforming how applications 
are secured, forcing organizations (or users) to rethink perimeter-based trust 
models. The goal of zero trust security models is to allow applications developers 
to have freedom in creating new innovation, but ensuring that application 
communications can ultimately be secured in these dynamic environments.

In this eBook we will outline concepts for evolving your security approach to 
address these dynamic environments for your modern applications.



4

Breaking security with application modernization

Modern application architectures are designed to increase the frequency of delivery. Microservices are made 
of potentially hundreds of small application services loosely coupled together to leverage agile development 
and continuous delivery practices. New technologies have emerged to enable their development, packaging and 
deployment including containers, Kubernetes, git, continuous delivery, service mesh, and more. The operational 
best practices are still evolving to understand how best to gain visibility, observability, and control over these 
additional layers of abstraction. 

Additionally, these new applications behave differently and challenge existing operational models and tools for 
monitoring and security. Instead of being fixed to a single physical machine, IP, or operating system, microservices 
can share OS kernels, automatically scale up and down, and are frequently orchestrated to run on different 
hosts. Sometimes they are running as serverless functions in which the underlying details of the infrastructure 
are unknown to the operator. With a growing number of assets (users, devices, services) outside the corporate 
firewall and distributed points of access, the traditional approach of just having a secure perimeter is not enough. 
The concept of what is trusted must change to include a more diverse portfolio of modern microservices, legacy 
applications, and infrastructure.

•	 Static and long-lived

•	 Monolithic

•	 Waterfall Software lifecycle process

•	 On-premises VMs or bare metal

•	 One service to access

•	 Dedicated Clients

•	 On campus or VPN

•	 Patch in place

•	 Fixed identities (IPs, machines)

•	 Multiple services to access

•	 Mobile, web clients

•	 Public internet

•	 Deploy new service

•	 Abstracted infrastructure

•	 Dynamic and ephemeral

•	 Multi-language microservices

•	 Continuous, independent delivery

•	 On-premises, hybrid and multi-cloud

•	 Serverless functions

CHARACTERISTICS

MONOLITH DISTRIBUTED APPLICATION

SECURITY PROFILE



5

•	 Do not trust anything outside the firewall

•	 Secure the perimeter

•	 Provide a single point of entry

•	 Trust anything inside corporate firewall

•	 (Still) do not trust anything outside the firewall

•	 (Still) secure the perimeter

•	 Provide multiple points of entry and exit

•	 Do not trust anything inside the corporate 
firewall either

BEFORE AFTER

Get inside the perimeter for zero trust networks

Introduced in 2010 by Forrester Research, the “zero trust network” model is based on the belief that organizations 
should not automatically trust anything outside or inside the organization. Instead microservices should verify 
everything (device, end user, system) before granting permission to access any system.

Why is the shift to zero trust significant?



6

The basic fundamentals of the Zero trust 
model include:

Eliminated trust: No user or device should 
be trusted without proper authentication 
and authorization.

Least-privileged access: Users 
should receive the minimum amount 
of access necessary.

Risk management analytics: All network and 
application traffic should be logged and 
inspected for suspicious activity.

Microsegmentation: Security perimeters 
and network components are broken 
into smaller segments with individual 
access requirements.

The two most important changes are related to 
the following:

1	 https://www.forrester.com/report/Five+Steps+To+A+Zero+Trust+Network/-/E-RES120510

2	 TechTarget article: https://searchsecurity.techtarget.com/definition/zero-trust-model-zero-trust-network

01

02

You can no longer blindly trust anything inside 
the corporate firewall

In this context, “anything” means all devices, 
people, and systems. Previous models focused on 
protecting the network perimeter and entry onto 
it, so everything on the “inside” was assumed 
safe. This shift assumes that internal systems 
and end user accounts are susceptible to 
attack, takeover, or unintentional errors that can 
compromise other systems.

Points of entry are becoming many and variable

With the adoption of SaaS, public cloud, and 
bring-your-own device programs, entry and exit 
points are now variable and often accessed over 
the public internet versus VPN.

https://www.techtarget.com/searchsecurity/definition/What-is-risk-management-and-why-is-it-important
https://www.techtarget.com/searchnetworking/definition/microsegmentation
https://www.forrester.com/report/Five-Steps-To-A-Zero-Trust-Network/RES120510
https://www.techtarget.com/searchsecurity/definition/zero-trust-model-zero-trust-network


7

As we evaluate the development of 
microservices through the lens of zero trust, 
requirements emerge on how to practically 
implement those principles into the 
application architecture. As a collection of 
loosely coupled services, the network between 
the microservices becomes a critical factor in 
delivering a properly functioning application 
and becomes the leverage point for control 
and security.

The diagram outlines the traffic patterns 
of microservices. Consider the numbered 
sections as areas to implement zero trust 
security principles:

Applying zero trust for microservices

01 02

03

Ingress: Traffic coming into the cluster may 
be referred to as “north-south” traffic. This 
is when end users or devices try to access 
an application service either from within or 
beyond the corporate firewall.

Inter- and intra-cluster: Traffic between the services may 
be referred to as “east-west” traffic. Depending on your 
environment, you may have many.

Egress: Traffic leaving the cluster to an external service.
Depending on your environment, you may have many



8

GLOO API GATEWAY INFRASTRUCTURE

The rise of Envoy Proxy API gateways and Istio service mesh

The rise of open source, cloud native technologies like containers, Kubernetes, Istio service mesh, and Envoy proxy 
have made it possible to address security for microservices environments in new ways. The smart approach 
centralizes some aspects of security (like policies and configuration) while decentralizing others (enforcement and 
logging) so that the implementations and observability can scale linearly with the distributed application services

Consider the same diagram from the previous page with zero trust principles applied using proxies at the edge 
and as sidecars to control, secure, and monitor the application traffic into and within the cluster. At the edge, API 
Gateway functionality (using Envoy proxy) is configured by Gloo Gateway to help validate the traffic and verify the 
requester before establishing trust and granting access to a service. Inside the cluster, service mesh functionality 
(using Envoy proxy) is configured by Gloo Mesh to only grant access between designated services and can encrypt 
communications if needed.

A portfolio of tools to enable, secure, and manage modern application service connectivity.

An enhanced Envoy Proxy API gateway and ingress controller for Kubernetes. Gloo 
Edge is a lightweight yet powerful control plane to configure and manage Envoy Proxy 
in facilitating, shaping, and securing incoming application traffic.

Unified management plane for single or multi-cluster Istio service mesh 
environments handling installation, configuration, and operations. Production support 
and long term support (LTS) for validated, upstream Istio software is included.



9

In the diagram below, untrusted inbound user and application edge traffic (north-south traffic) from the Internet 
is filtered by Gloo Gateway and secured before being directed to appropriate microservices. Security rules are 
implemented in Envoy Proxy filters, and logging is aggregated. Similarly Gloo Mesh core functions deliver the inter- and 
intra-service security controls and enforcement between microservices. Security policies are implemented centrally 
and federated everywhere for consistency and reduced risk. Solo’s release of Envoy Proxy and Istio software is FIPS 
140-2 compliant for added security.

Connect, secure, and control



10

03

04

Egress: Authenticate and grant secure access 
to external services to complete transactions.

Observability: End to end observability of 
application traffic patterns and anomalies 
to quickly resolve issues.

01
Ingress (Gateway): There are three ways to 
establish trust and validate fidelity of incoming 
traffic to protect your systems.

•	 Web Application Filter (WAF): Inspect, filter, and block 
malicious traffic and only allow safe traffic into the 
environment.

•	 Data Loss Prevention (DLP): Protect loss and leakage of 
sensitive data (PII, Credit Cards, etc.)

•	 Authentication and Authorization: Identify and authenticate 
end users (clients) and only grant access to the authorized 
services.

•	 Rate Limiting: controls the volume

02
In Cluster (Service Mesh): Secure and encrypt 
communications from ingress to the services 
in the cluster. Only grant access between 
designated services and not throughout the 
entire cluster.



11

In the diagram below, there is an example of how Envoy Proxy filters can directly secure traffic, while the Gloo Gateway 
control plane manages policies for authentication, authorization, web application firewall (WAF), data loss prevention 
(DLP), and other custom rules.



12

Conclusion

New application architectures require more than changes to code. The paradigm for operations and security must 
also shift to account for the disruption caused by the architectural changes. Modern applications challenge previous 
security conventions but have also spawned a new ecosystem of open source and commercial technologies that 
address these scenarios.

The potential of Envoy Proxy and Istio is reshaping networking from microservice architectures. They act as all-
purpose aggregation points, presenting opportunities for traffic shaping, policy control, and observability which can 
be leveraged to improve overall application security. Zero trust is a comprehensive model for security encompassing 
devices, end users, systems, and both internal and public networks. The core principles of zero trust can be applied to 
modern applications in conjunction with Envoy as API gateway and Istio service mesh.

Solo.io, the leading application networking company, delivers a service mesh and API platform for Kubernetes, zero 
trust, and microservices. The three components of the Gloo Platform – Gloo Gateway, Gloo Mesh and Gloo Network 
– enable enterprise companies to rapidly adopt microservice applications, as part of their cloud journey and digital 
transformation. Solo.io delivers open source solutions, and is a community leader in building the technologies of the 
future.

Founded in 2017 in Cambridge, MA, Solo is backed by Altimeter Capital, Redpoint Ventures, and True Ventures.

Learn More Visit our website

Request a personalized demo

Get started with a trial

https://www.solo.io/
https://www.solo.io/get-started
https://www.solo.io/trial

	Introduction
	Understanding Observability
and Service Mesh
	What is OpenTelemetry
	OpenTelemetry Collector
	Distributed Tracing with 
OpenTelemetry Collector

