
1

Driving Business
Value with Istio

eBook

How a service mesh can help your
organization simplify the adoption of
a distributed architecture

2

Table of Contents

Introduction 3

The Common Challenges of Managing Microservices 4

Understanding the Service Mesh Architecture 5

Istio Use Cases 8

How Gloo Platform Makes Istio Even Better 12

3

Introduction

Whether we’re talking to our customers, community members, or other
experts in the field, what we hear consistently is that their major hurdles with
application modernization are security, resiliency, and observability.

Organizations are at a major point of transition, moving from monolithic
applications to microservices. That’s with good reason – microservices allow
for greater agility and faster delivery and time-to-deployment, increasing
customer satisfaction and streamlining business operations.

The challenge with microservices, when compared to traditional application
servers, is that security, resiliency, and observability are down to each one
of the individual teams managing the different microservices – there’s no
default uniformity or consistency.

A service mesh is an infrastructure layer that aids in communication

between services or microservices using a proxy. Istio is a service
mesh that helps organizations address and simplify many
of the common issues associated with a distributed
architecture.

In the following sections, we’ll walk through what those challenges are, how a
service mesh can help, and why Istio in particular is the right solution.

4

The Common Challenges of
Managing Microservices

The Impact on Security

With microservices highly distributed across a multi-cloud ecosystem, there
is a multiplication of potential attack vectors, and the threat of cyberattacks
is greater than ever. Security incidents risk organizations losing revenue and
reputations, which can also cost customers and prospects.

93% of respondents reported at
least one security incident in
their Kubernetes environment
in the past 12 months.1

31% of respondents say they
have experienced revenue
or customer loss due to a
security incident over the last
12 months.2

The average cost of a data
breach is $4.24 million.3

1 https://www.redhat.com/rhdc/managed-files/cl-state-of-kubernetes-security-report-2022-ebook-f31209-202205-en.pdf

2 https://www.redhat.com/rhdc/managed-files/cl-state-of-kubernetes-security-report-2022-ebook-f31209-202205-en.pdf

3 https://qz.com/2039599/why-the-cost-of-getting-hacked-is-higher-than-ever

93% 31% $4.24M

1 https://www.redhat.com/rhdc/managed-files/cl-state-of-kubernetes-security-report-2022-ebook-f31209-202205-en.pdf

2 https://www.redhat.com/rhdc/managed-files/cl-state-of-kubernetes-security-report-2022-ebook-f31209-202205-en.pdf

3 https://qz.com/2039599/why-the-cost-of-getting-hacked-is-higher-than-ever

5

For Fortune 1000 companies, downtime could cost
as much as $1 million per hour4

A typical mid-sized company spends $1 million per
year on incidents6

lower customer satisfaction, loss of revenue,
reputation loss, loss of customers7

Downtime in high risk industries (banking, finance,
government, healthcare, manufacturing, and media/
communications) can cost as much as $5 million
per hour5

The Impact on resiliency

Service downtime, like an infrastructure or service failure, directly
impacts revenue. Any issues with service delivery affect customer
satisfaction and trust.

Per
Hour

Per
Year

Impact of
Downtime

Per
Hour

$1M $1M

Business$5M

4 https://www.atlassian.com/incident-management/kpis/cost-of-downtime

5 https://trilio.io/resources/cost-of-downtime/

6 https://www.atlassian.com/incident-management/kpis/cost-of-downtime

7 https://www.atlassian.com/incident-management/kpis/cost-of-downtime

6

The Impact on Observability

With such huge costs at stake from a security and resiliency perspective,
organizations need to be able to detect and plan for these problems. Your
competitors are – and it shows in their ability to innovate.8

Beginners: $23.8 million

Leaders: $2.5 million

Annual cost of downtime associated with
business-critical internally developed apps:

8 https://www.splunk.com/en_us/pdfs/gated/research/state-of-observability-2022.pdf

Report an improvement in
problem detection time

Say they’ve seen an improvement
in development times

Better mean time to resolution
for unplanned downtime or
performance degradation

Report an improvement in
deployment times

7

Understanding the Service
Mesh Architecture

A control plane is where a user describes what they want to
happen and defines the policies they want to enforce, and
the data plane is where those policies are actually realized,
enacted, and enforced. They communicate with each other.

They’re important because users can define policies
and configuration around security, resiliency, and
observability in a single place, and deploy them through
the control plane, and the control plane can then implement
those directly in the data plane without requiring any
changes or any buy-in from any of the existing services
connected to the data plane.

Istio follows the control plane and data plane architecture
pattern. With Istio, the control plane reads the user-

defined configuration (Kubernetes Custom Resources),
and distributes it to the data plane where the policies are
enforced.

Service meshes like Istio help users gain more insight and
control of distributed application behavior. They provide
essential capabilities to application developers, including
service

communication-layer security, service discovery, client-
side load balancing, timeouts, retries, and circuit breaking.

8

Istio Use Cases

Here are a few scenarios – of many – where Istio can be especially valuable, saving your company time and money by
automating important tasks while mitigating risk.

Automatic Security

Networking, and enforcing mTLS in particular, is a primary
use case for Istio.

Encryption of the data in transit is the primary benefit of
TLS, while mTLS adds the ability to validate the identity
of both client and service. Normally, network traffic in
Kubernetes clusters is unencrypted and anyone that
can get access to the network can observe, opening
organizations up to security risks.

That’s why zero trust, where the target state is that there
are no implicit security assumptions, is so valuable. All
workloads authenticate and are authorized to access
other services.

We know zero trust is critical, but it’s challenging for
companies to internally implement on their own:

81% of companies experienced a
certificate-related outage in the past
two years.

65% are concerned about the
increased workload and risk of
outages caused by shorter SSL/TLS
certificate lifespans.

Human error was a major contributing
factor in 95% of breaches.

https://www.solo.io/topics/zero-trust
https://venturebeat.com/technology/report-81-of-companies-experienced-a-certificate-related-outage-in-the-past-two-years/
https://venturebeat.com/technology/report-81-of-companies-experienced-a-certificate-related-outage-in-the-past-two-years/
https://www.redhat.com/rhdc/managed-files/cl-state-of-kubernetes-security-report-2022-ebook-f31209-202205-en.pdf

9

Transport Security

Which automatically encrypts communication
between all services in transit.

Identity Authorization

Which provides strong identities for both
the client and server.

Certificate Management

Where the certificates that are used are
automatically refreshed and the lifestyle of
those certificates is controlled by Istio itself.

Istio helps eliminate the human failure modes
for non-compliance or what’s associated with
downtime for expired certificates. With Istio,
you get instant mTLS.

Automation makes that implementation much
easier, and that’s what Istio does for security.
With Istio, users get:

10

Allowing for failures

In cloud native environments, containers and services go up and down –
and there are going to be failures. Often, those failures are transient and
happen for a short period of time, eventually going away. We know that in
regard to being resilient:

 y Waiting indefinitely is bad: services need to be
controlled for when other dependent services are
unresponsive

 y Trying multiple times is a good practice: if a service
fails once, then it should be set up to try again

 y Allowing for degradation is important: when services
get overwhelmed, or go bad permanently, they need
to be taken out of action gracefully

There are common mitigation strategies for these failures:

Implementing timeouts that say to only wait a
certain period of time, and then terminate the
connectio

Allowing for a certain number of retries in the
event of a service interruption

Flipping a circuit breaker to limit the amount
of traffic before it overwhelms a service and
causes a full outage for all customers

While the Kubernetes orchestration layer is built to keep services running, Istio can help users keep resiliency strategies
in place that control how all services communicate with each other, with no code changes or intervention needed from
development teams.

11

Gaining valuable insights

With development teams deploying many different types of services, users need to be able to look at the overall system
in a consistent and uniform manner, then take action based on that view. Building a uniform approach across teams means
everyone can:

Through Istio, there are standardized metrics, tracing, and access logs that serve as
a true recording of what went into or out of a given service – no matter what team
deployed it or which programming language it was written in. This valuable data can
be viewed in out-of-the-box and existing observability dashboards.

That level of observability can save millions of dollars a year, allowing users to get
ahead of potential downtime issues.

Understand Traffic
Patterns

Determine
Service Health

Anticipate
Outages

Detect Dangerous
Activity

Audit
Access

12

How Gloo Platform Makes Istio
Even Better

As an open source project, Istio can be installed by anyone, but as a stand-alone package,
management of Istio, along with other Kuberenetes components, can be very difficult and time
consuming. When deployed in large environments with multiple teams and clusters, configuring Istio
directly can be complicated and error prone.

Solo.io’s Gloo Platform is built with Istio at its core – every feature we’ve built around it has been
informed by the enterprise needs of our customers as they adopt Istio. Gloo Mesh is a distribution of
the Istio service mesh that is hardened for production support across multiple teams and multicluster
hybrid clusters. Gloo Mesh has a simplified configuration model that is catered to application
developers and SREs, which is easier to use and less error prone than the basic Istio configuration

13

With Gloo Mesh, you can unify the configuration, operation, and visibility of service-to-service
connectivity across your distributed applications. These apps can run in different virtual machines (VMs)
or Kubernetes clusters on premises or in various cloud providers, and even in different service meshes.

The platform we’ve built around Istio has enriched the service mesh even further, identifying the gaps in Istio
and addressing them. Gloo Mesh includes n-4 Istio version support with security patches to address Common
Vulnerabilities and Exposures (CVE), as well as special builds to meet regulatory standards such as Federal
Information Processing Standards (FIPS). The enterprise features also include multi-tenancy, global failover
and routing, observability, and east-west rate limiting and policy enforcement through authorization and
authentication plug-ins.

Benefit
Gloo Mesh
Enterprise

Gloo Mesh
Open Source

Community
Istio

Upstream-first approach to feature development

Installation, upgrade, and management across clusters and service meshes

Advanced features for security, traffic routing, transformations, observability, and more

End-to-end Istio support and CVE security patching for n-4 versions

Specialty builds for distroless and FIPS compliance

24x7 production support and one-hour Severity 1 SLA

GraphQL and Portal modules to extend functionality

Workspaces for simplified multi-tenancy

14

Gloo Mesh is built with the following six principles to improve how you can introduce
a service mesh into your cloud native environment with confidence:

Secure
You need a zero trust model and end-to-
end controls to implement best practices,
comply with strict regulations like FIPS, and
reduce the risk of running older versions with
security patching.

Reliable
You need a robust, enterprise-grade tool with
features like priority failover and locality-aware
load balancing to manage your service mesh and
API gateway for your mission-critical workloads.

Comprehensive
You need a complete solution for north-south
ingress and east-west service traffic management
across infrastructure resources on-premises and
across clouds.

Unified
You need one centralized tool to manage and
observe your application environments and
traffic policies at scale.

Simplified
Your developers need a simple, declarative,
APIbased method to provide services
to your apps without further coding and
without needing to understand the complex
technologies like Istio and Kubernetes that
underlie your environments.

If your organization is concerned about security, resiliency, and observability, Gloo Platform can help you
move beyond problem solving and into scaling and innovating.

Moden and Open
You need a solution that is designed from the
ground up on open source, cloud native best
practices and leading projects like Kubernetes
and Istio to maximize the portability and
scalability of your development processes.

15

About Solo.io
Solo.io, the leading application networking company, delivers a service
mesh and API platform for Kubernetes, zero trust, and microservices. The
components of Gloo Gateway and Gloo Mesh enable enterprise companies
to rapidly adopt microservice applications as part of their cloud journey
and digital transformation. Solo.io delivers open source solutions, and is a
community leader in building the technologies of the future.

contact@solo.io

www.solo.io

Learn more

mailto:mailto:contact%40solo.io?subject=
https://www.solo.io/
https://www.solo.io/

